• Title/Summary/Keyword: CubeSail

Search Result 5, Processing Time 0.013 seconds

Development and Performance Test of Solar Sail System for CNUSAIL-1 Cube Satellite (CNUSAIL-1 큐브위성의 태양돛 개발 및 성능시험)

  • Song, Su-A;Kim, Seungkeun;Suk, Jinyoung;Roh, Jin-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.3
    • /
    • pp.228-239
    • /
    • 2016
  • CNUSAIL-1 is a 3U-sized cube satellite with $4m^2$ small solar sail which is currently being developed at the Chungnam National University. The primary purpose of the CNUSAIL-1 is successful sail deployment in LEO and its operation for investigating its effect on satellite orbit and attitude as well as performing de-orbiting using the sail membranes as drag sail at the final phase. The system design and mechanism of solar sail deployment is introduced, and optical and tensile tests are carried out for the material of membranes and booms for its safety and performance verification. The ground test is carried out to verify its performance for sail deployment and satellite through comparison between folding methods by determining its folding patterns, thickness of spiral spring and angular velocity measurement in a low-friction environment.

Mission and Conceptual System Design of Solar Sail Testing Cube Satellite CNUSAIL-1 (태양돛 시험용 큐브위성 CNUSAIL-1의 임무 및 시스템 개념설계)

  • Koo, Soyeon;Kim, Gyeonghun;Yoo, Yeona;Song, Sua;Kim, Sungkeun;Oh, Bockyoung;Woo, Beomki;Han, Chang-Gu;Kim, Seungkeun;Suk, Jinyoung;Han, Sanghyuck;Choi, Gi-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.586-593
    • /
    • 2014
  • The CNUSAIL-1 project aims to develop and operate a 3U-sized cube satellite with solar sail mechanism. The primary mission is to successfully deploy the solar sail in a low earth orbit, and the secondary mission is to collect the scientific data for the effect of the solar sail deployment and operation on orbit maneuver and attitude change of the cube satellite. For this, the bus system will collect and transmit the dynamic data of the satellite and the visual images of the solar sail operation. This paper describes solar sail mission and conceptual design of CNUSAIL-1. The actuation/operation of the solar sail and the bus system are preliminarily designed in terms of attitude control system, communication system, electrical power system, command and data handling system, structure and thermal control system is designed.

Attitude Determination Algorithm Design and Performance Analysis for CNUSAIL-1 Cube Satellite (CNUSAIL-1 큐브위성의 자세결정 알고리듬 설계 및 성능분석)

  • Kim, Gyeonghun;Kim, Seungkeun;Suk, Jinyong;Kim, Jong-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.609-618
    • /
    • 2015
  • This paper discusses the attitude determination of the CNUSAIL-1 cube-satellite. The primary mission of the CNUSAIL-1 is sail deployment and operation in low Earth orbit, and the secondary mission is to look into influence of the sail deployment on satellite attitude and orbit. The attitude determination strategy is proposed depending on three mission phases, and its performance and applicability are verified through numerical simulations. This study considers the following sensors: Sun sensors and a three-axis magnetometer as attitude reference sensors, and a three-axis MEMS gyroscope as an inertial attitude sensor. Because sensors used for cube satellites have relatively low performances and worse noise characteristics, an Extended Kalman filter (EKF) is applied to attitude determination. Additionally, it has the merits to deal with the Gaussian noises and to predict the attitude even with no measurements from reference attitude sensors, especially in the eclipse of the cube satellite. The performance of the EKF is compared to a deterministic attitude determination technique, QUEST(QUaternion ESTimation).

Solar Sails: Technology And Demonstration Status

  • Johnson, Les;Young, Roy;Barnes, Nathan;Friedman, Louis;Lappas, Vaios;McInnes, Colin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.421-427
    • /
    • 2012
  • Solar Sail propulsion has been validated in space (IKAROS, 2010) and soon several more solar-sail propelled spacecraft will be flown. Using sunlight for spacecraft propulsion is not a new idea. First proposed by Frederick Tsander and Konstantin Tsiolkovsky in the 1920's, NASA's Echo 1 balloon, launched in 1960, was the first spacecraft for which the effects of solar photon pressure were measured. Solar sails reflect sunlight to achieve thrust, thus eliminating the need for costly and often very-heavy fuel. Such "propellantless" propulsion will enable whole new classes of space science and exploration missions previously not considered possible due to the propulsive-intense maneuvers and operations required.

Attitude Control System Design & Verification for CNUSAIL-1 with Solar/Drag Sail

  • Yoo, Yeona;Kim, Seungkeun;Suk, Jinyoung;Kim, Jongrae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.579-592
    • /
    • 2016
  • CNUSAIL-1, to be launched into low-earth orbit, is a cubesat-class satellite equipped with a $2m{\times}2m$ solar sail. One of CNUSAIL's missions is to deploy its solar sail system, thereby deorbiting the satellite, at the end of the satellite's life. This paper presents the design results of the attitude control system for CNUSAIL-1, which maintains the normal vector of the sail by a 3-axis active attitude stabilization approach. The normal vector can be aligned in two orientations: i) along the anti-nadir direction, which minimizes the aerodynamic drag during the nadir-pointing mode, or ii) along the satellite velocity vector, which maximizes the drag during the deorbiting mode. The attitude control system also includes a B-dot controller for detumbling and an eigen-axis maneuver algorithm. The actuators for the attitude control are magnetic torquers and reaction wheels. The feasibility and performance of the design are verified in high-fidelity nonlinear simulations.