• 제목/요약/키워드: Cube-satellite

검색결과 84건 처리시간 0.027초

복수구조 전개 및 발사체 분리직후 시스템 자동운용을 위한 큐브위성의 메커니즘 설계 (Mechanism Design of Cube Satellite for Multi-deployable Structures and Autonomous System Operation after Launcher Separation)

  • 이명재;정현모;오현웅
    • 항공우주시스템공학회지
    • /
    • 제7권3호
    • /
    • pp.20-25
    • /
    • 2013
  • In case of cube satellite, it is difficult to realize the same performance as commercial satellite due to its highly restricted unit accommodation space. To maximize the performance of the cube satellite, design concept considering the multi-function of satellite is required. In this paper, mechanism design of cube satellite which is applicable for the holding and release of multi-deployable structures has been proposed and investigated. In addition, a switch mechanism design for the autonomous system operation just after the cube satellite separation from P-POD has also been proposed. The effectiveness of the mechanism design for holding and release of multi-deployable structures has been demonstrated by EM test of the holding and release mechanism.

영구자석 안정화 자세제어 방식이 적용된 큐브위성의 열적 특성분석 (Numerical Investigation of On-orbit Thermal Characteristics for Cube Satellite with Permanent Magnet Attitude Stabilization Method)

  • 강수진;정현모;오현웅
    • 항공우주시스템공학회지
    • /
    • 제7권3호
    • /
    • pp.26-32
    • /
    • 2013
  • Passive attitude stabilization method has been widely usde for attitude determination and control of cube satellite due to its advantage of system simplicity. The permanent magnet installed on the cube satellite passively controls the attitude of the satellite such that the satellite is aligned with the earth magnetic field. In this paper, on-orbit thermal behavior of the cube satellite with the permanent magnet attitude stabilization method has been investigated through on-orbit thermal analysis. THe orbit profile obtained from the aforementioned attitude control method has been reflected in the analysis. The analysis results indicate that the thermal design proposed in this study is effective for satisfying the temperature requirements of the commericial mission equipments.

큐브위성용 상용 전력계 부품을 적용한 영구자석 자세제어 안정화 방식 큐브위성의 전력계 개념설계 (Conceptual Design of Electrical Power Subsystem for Cube Satellite with Permanent Magnet Attitude Stabilization Method)

  • 박태용;채봉건;정현모;오현웅
    • 항공우주시스템공학회지
    • /
    • 제8권1호
    • /
    • pp.42-47
    • /
    • 2014
  • The role of Electrical Power Subsystem (EPS) is to generate a power and distribute it to the electrical devices for the system operation. For on-orbit operation of cube satellite, it is also necessary to supply power to on-board mission devices as commercial satellite does. Recently, commercial EPS products dedicated for the cube satellite application has been developed and widely used for the power subsystem design. In this paper, a permanent magnet attitude stabilization method without external power has been introduced because it has advantage from power consumption point of view and the EPS design of cube satellite by applying the commercial EPS products has been introduced and investigated. This paper also deals with the specification of the commercial EPS products for the beginner of the cube satellite design.

큐브위성 STEP Cube Lab.의 지상국 시스템 설계 (Design of Ground Station System for CubeSat STEP Cube Lab.)

  • 전영현;채봉건;정현모;전성용;오현웅
    • 항공우주시스템공학회지
    • /
    • 제6권4호
    • /
    • pp.34-39
    • /
    • 2012
  • CubeSats classified as pico-class satellite require a ground station to track the satellite, transmit a command, and receive an on-orbit data such as SOH (State-of-Health) and mission data according to the operation plan. For this, ground station system has to be properly designed to perform a communication to with the satellite with enough up- and down-link budgets. In this study, a conceptual design of the ground station has been performed for the CubeSat named as STEP Cube Lab. (Cube Laboratory for Space Technology Experimental Project). The paper includes a ground station hardware interface design, link budget analysis and a ground station software realization. In addition, the operation plan of the ground station has been established considering the STEP Cube Lab. mission requirements.

Development of Electrical Power Subsystem of Cube Satellite STEP Cube Lab for Verification of Space-Relevant Technologies

  • Park, Tae-Yong;Chae, Bong-Geon;Oh, Hyun-Ung
    • International Journal of Aerospace System Engineering
    • /
    • 제3권2호
    • /
    • pp.31-37
    • /
    • 2016
  • STEP Cube Lab (Cube Laboratory for Space Technology Experimental Project) is a 1U standardized pico-class satellite. Its main mission objective is an on-orbit verification of five fundamental core space technologies. For assuring a successful missions of the STEP Cube Lab with five payloads, electrical power subsystem (EPS) shall sufficiently provide an electrical power to payloads and bus systems of the satellite during an entire mission life. In this study, a design process of EPS system was introduced including power budget analysis considering a mission orbit and various mission modes of the satellite. In conclusion, adequate EPS hardware in compliance with design requirements were selected. The effectiveness and mission capability of EPS architecture design were confirmed through an energy balance analysis (EBA).

큐브위성 개발프로그램을 통한 우주전문 인력양성 성과 (The Result of Space Experts Training through Cube Satellite Development Program)

  • 차진영;오현웅
    • 항공우주시스템공학회지
    • /
    • 제8권3호
    • /
    • pp.27-33
    • /
    • 2014
  • The CubeSat, which was first launched to verify new technologies and for educational purposes, is now widely used as an educational tool since it makes possible development of manpower through practical training to produce the satellite at low development costs. At present, research and development on the CubSat is rapidly expanding in domestic and foreign universities. As one of the final 3 teams selected in the 2013 CUBE SATELLITE CONTEST organized by the Ministry of Science, ICT and Future Planning, Chosun University is also currently conducting R & D of STEP Cube Lab, which is a CubeSat scheduled to be launched in 2015 and whose main task is to verify space-based technologies in orbit. The present paper tries to present an overview of the CubeSat of Chosun University whose development is being led by its undergraduate students, and further, introduce the strengths of the present development program for developing space experts, based on the educational achievements from the R & D.

큐브위성 STEP Cube Lab.의 지상국 시스템 개발 (Design of Ground Station System for CubeSat STEP Cube Lab.)

  • 전영현;채봉건;정현모;전성용;오현웅
    • 항공우주시스템공학회지
    • /
    • 제9권4호
    • /
    • pp.37-42
    • /
    • 2015
  • The CubeSats is classified as a pico-class satellite which requires a ground station to track the satellite, transmit commands, and receive an on-orbit data such as SOH (State-of-Health) and mission data according to the operation plan. In order to this, the ground station system has to be properly designed to perform a communication to with the satellite with enough up- and down-link budgets. In this study, a conceptual design of the ground station has been performed for the CubeSat named as STEP Cube Lab. (Cube Laboratory for Space Technology Experimental Project). The paper includes a ground station hardware interface design, a link budget analysis and a ground station software realization. In addition, the operation plan of the ground station has been established considering the STEP Cube Lab. mission requirements.

Structural Design and Analysis of Pico-class Satellite named STEP Cube Lab

  • Jeon, Su-Hyeon;Jang, Su-Eun;Jung, Hyun-Mo;Cha, Jin-Yeong;Oh, Hyun-Ung
    • International Journal of Aerospace System Engineering
    • /
    • 제1권1호
    • /
    • pp.34-43
    • /
    • 2014
  • The STEP Cube Lab (Cube Laboratory for Space Technology Experimental Projects) is a 1U cube satellite developed by the Space Technology Synthesis Laboratory of Chosun University to be launched in 2015. Its mission objective is twofold: to determine which of the fundamental space technologies researched at domestic universities, will be potential candidates for use in future space missions and to verify the effectiveness of the technologies by investigating mission data obtained from on-orbit operation of the cube satellite. In this paper, a structural design concept based on the 1U standard to achieve the mission objective is introduced. The validity of the design has been demonstrated by quasi-static analysis and modal analysis. In addition, a non-explosive separation device triggered by burn wire heating, which is one of the main mission payloads is introduced.

Performance Evaluation of Hinge Driving Separation Nut-type Holding and Releasing Mechanism Triggered by Nichrome Burn Wire

  • LEE, Myeong-Jae;LEE, Yong-Keun;OH, Hyun-Ung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권4호
    • /
    • pp.602-613
    • /
    • 2015
  • As one of the mission payloads to be verified through the cube satellite mission of Cube Laboratory for Space Technology Experimental Project (STEP Cube Lab), we developed a hinge driving separation nut-type holding and releasing mechanism. The mechanism offers advantages, such as a large holding capacity and negligible induced shock, although its activation principle is based on a nylon cable cutting mechanism triggered by a nichrome burn wire generally used for cube satellite applications for the purpose of holding and releasing onboard appendages owing to its simplicity and low cost. The basic characteristics of the mechanism have been measured through a release function test, static load test under qualification temperature limits, and shock measurement test. In addition, the structural safety and operational functionality of the mechanism module under launch and on-orbit environments have been successfully demonstrated through a vibration test and thermal vacuum test.

우주기반기술 검증을 위한 극초소형 위성 STEP Cube Lab.의 궤도 열해석 (On-orbit Thermal Analysis of Pico-class Satellite STEP Cube Lab. for Verification of Fundamental Space Technology)

  • 강수진;하헌우;오현웅
    • 한국항공우주학회지
    • /
    • 제42권9호
    • /
    • pp.795-801
    • /
    • 2014
  • STEP Cube Lab.은 조선대학교 항공우주공학과 우주기술융합연구실에서 개발 중인 극초소형 위성으로 구분되는 1U 큐브위성으로, 논문 연구 실적으로만 그친 우주핵심기술을 발굴 및 탑재하여 궤도 검증 실시 및 해당 분야 기술의 지적 저변확대에 공헌을 목표로 한다. 이에 본 논문에서는 주요 탑재체인 가변방사율 라디에이터, 무충격 구속분리장치 그리고 MEMS 고체추진로켓 등을 탑재하여 극한 우주 열환경에서의 위성 시스템과 탑재 체의 안정적인 궤도 운용 및 기술 검증을 위해 시스템 통합 열해석 및 열제어를 실시하였으며, 이를 통해 해석결과 분석 및 열제어 설계의 타당성을 입증하였다.