• Title/Summary/Keyword: Cube Structures

Search Result 78, Processing Time 0.022 seconds

Data Cude Index to Support Integrated Multi-dimensional Concept Hierarchies in Spatial Data Warehouse (공간 데이터웨어하우스에서 통합된 다차원 개념 계층 지원을 위한 데이터 큐브 색인)

  • Lee, Dong-Wook;Baek, Sung-Ha;Kim, Gyoung-Bae;Bae, Hae-Young
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.10
    • /
    • pp.1386-1396
    • /
    • 2009
  • Most decision support functions of spatial data warehouse rely on the OLAP operations upon a spatial cube. Meanwhile, higher performance is always guaranteed by indexing the cube, which stores huge amount of pre-aggregated information. Hierarchical Dwarf was proposed as a solution, which can be taken as an extension of the Dwarf, a compressed index for cube structures. However, it does not consider the spatial dimension and even aggregates incorrectly if there are redundant values at the lower levels. OLAP-favored Searching was proposed as a spatial hierarchy based OLAP operation, which employs the advantages of R-tree. Although it supports aggregating functions well against specified areas, it ignores the operations on the spatial dimensions. In this paper, an indexing approach, which aims at utilizing the concept hierarchy of the spatial cube for decision support, is proposed. The index consists of concept hierarchy trees of all dimensions, which are linked according to the tuples stored in the fact table. It saves storage cost by preventing identical trees from being created redundantly. Also, it reduces the OLAP operation cost by integrating the spatial and aspatial dimensions in the virtual concept hierarchy.

  • PDF

Geometric Thermoelectric Generator Leg Shape Design for Efficient Waste Heat Recovery (효율적인 폐열 회수를 위한 기하학적 열전소자 다리 설계)

  • Hyeon-Woo Kang;Jung-Hoe Kim;Young-Ki Cho;Won-Seok Choi;Hyun-Ji Lee;Hun-Kee Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.589-602
    • /
    • 2024
  • Thermoelectric generator (TEG) generally do not have high heat conversion efficiencies. The performance of a thermoelectric generator module depends on the shape of the legs as well as the properties of the material and the number of legs. In this study, the leg shapes of thermoelectric elements are modeled into various geometric structures such as cylinder and cube shaped to efficiently harvest waste heat, and the electrical characteristics are compared numerically. The temperature gradient and power generation according to the bridge shape are found to be highest at the existing Cube shape. As a result of comparing the power generation using the cooling effect, the Cone shape was the highest in natural convection and the Hourglass shape was highest in forced convection. Research results confirm that geometry can affect the efficiency of thermoelectric generators.

New analytical solutions to water wave diffraction by vertical truncated cylinders

  • Li, Ai-jun;Liu, Yong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.952-969
    • /
    • 2019
  • This study develops new analytical solutions to water wave diffraction by vertical truncated cylinders in the context of linear potential theory. Three typical truncated surface-piercing cylinders, a submerged bottom-standing cylinder and a submerged floating cylinder are examined. The analytical solutions utilize the multi-term Galerkin method, which is able to model the cube-root singularity of fluid velocity near the edges of the truncated cylinders by expanding the fluid velocity into a set of basis function involving the Gegenbauer polynomials. The convergence of the present analytical solution is rapid, and a few truncated numbers in the series of the basis function can yield results of six-figure accuracy for wave forces and moments. The present solutions are in good agreement with those by a higher-order BEM (boundary element method) model. Comparisons between present results and experimental results in literature and results by Froude-Krylov theory are conducted. The variation of wave forces and moments with different parameters are presented. This study not only gives a new analytical approach to wave diffraction by truncated cylinders but also provides a reliable benchmark for numerical investigations of wave diffraction by structures.

Fine Granule View Materialization in Data Cubes (데이타 큐브에서 세분화된 뷰 실체화 기법)

  • Kim, Min-Jeong;Jeong, Yeon-Dong;Park, Ung-Je;Kim, Myeong-Ho
    • Journal of KIISE:Databases
    • /
    • v.28 no.4
    • /
    • pp.587-595
    • /
    • 2001
  • Precomputation and materialization of parts. commonly called views of a data cube is a common technique in data warehouses The view is defined as the result of a query which is defined through aggregate functions In this paper we introduce the concept of fine granule view. The fine granule view is the result of a query defined through aggregate functions and the range on each dimension, where the subdivision of each dimension is based on queries access patterns. For the representation and selection of fine granule views to materialize, we define the ANO-OR cube graph and AND-OR minimum cost graph. With these structures, we propose a fine granule view materialization method. And through experiments, we evaluate the performance of the proposed method.

  • PDF

A Study on the Strength and Stiffness of Multi-Stage Cubic Truss Unit Structures (복합 입체형 정육면체 트러스 단위구조체의 강도 및 강성에 대한 해석 연구)

  • Choi, Jeongho
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.4
    • /
    • pp.139-145
    • /
    • 2019
  • This paper investigated the strength and stiffness of composite truss unit structures. The model used is a core-filled model combining the Kagome model and the cube truss model. The material properties used for the analysis are 304 stainless steel with elastic modulus of 193 GPa and yield stress of 215 MPa. The theoretical equation is derived from the relative elasticity relation of Gibson - Ashby ratio, the analysis was performed using Deform 3D, a commercial tool. In conclusion, the relative elasticity for this unit model correlates with 1.25 times the relative density and constant coefficient, elasticity is inversely proportional to pore size. The relative compressive strength has a correlation with relative density of 1.25 times. Proof of this is a real experiment, the derived theoretical relationship should further consider mechanical behavior such as bending and buckling. In the future, it is hoped that the research on the elasticity and the stress according to the structure of the three-dimensional space will be continued.

EMISSION LINE VELOCITY FIELD OF THE MAGELLANIC IRREGULAR GALAXY NGC 4449

  • SASAKI MINORU;OHTANI HIROSHI;SAITO MAMORU;OHTA KOUJI;YOSHIDA MICHITOSHI;SHIMIZU TASUHlRO;KOYANO HISASHI;KOSUGI GEORGE;AOKI KENTARO;SASAKI TOSHIYUKI
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.85-86
    • /
    • 1996
  • The imaging spectroscopic observations of the Magellanic irregular galaxy NGC 4449 were made to show the detailed kinematic structure of the galaxy. Many filamentary structures and Several bubble-like structures are recognized in a 3D data cube of H$\alpha$ emission line. Velocity field shows the kpc-scale mosaic structure and counter- rotation of ionized gas.

  • PDF

A Study on the Mireuksajiseoktap through the Structural Type of the Buddhist Pagoda in Ancient East Asia (고대 동아시아 불탑 구조체계를 통해 본 미륵사지석탑)

  • Cho, Eun-Kyung;Park, Eon-Kon
    • Journal of architectural history
    • /
    • v.20 no.5
    • /
    • pp.7-29
    • /
    • 2011
  • This research was to suggest the types according to structural system of the pagoda in ancient East-Asia and analyze the pagoda to the west of Mireuksaji temple site by these types. It will be possible to understand consistently the relation of the various form of the pagoda. The results of this research were described separately as follows. 1. The Buddhist pagodas founded in the ancient East Asia can be categorized according to their structural system, which provide us with insight to understand the interrelationship of categories. The pagoda is mainly classified into three categories. The first consists of two structures, an internal and an external structure. The second exposes its internal structure to the outside, and the third has the external components changing into the internal ones. 2. Although the pagoda to the west of Mireuksaji Temple Site have an internal and an external structures, it actually solves the structural problem by adopting the masonry structure in the outside as well as in the inside. Especially in this structural consideration can be found in the stylobate and the foundation structure of the pillar. The plan of the pagoda to the west of Mireuksaji Temple Site was intended to reveal the plane of the post-lintel layered construction which has a member, a main pillar, and the inner space in the cube with stones.

Pressure distribution on rectangular buildings with changes in aspect ratio and wind direction

  • Lee, Young Tae;Boo, Soo Ii;Lim, Hee Chang;Misutani, Kunio
    • Wind and Structures
    • /
    • v.23 no.5
    • /
    • pp.465-483
    • /
    • 2016
  • This study aims to enhance the understanding of the surface pressure distribution around rectangular bodies, by considering aspects such as the suction pressure at the leading edge on the top and side faces when the body aspect ratio and wind direction are changed. We carried out wind tunnel measurements and numerical simulations of flow around a series of rectangular bodies (a cube and two rectangular bodies) that were placed in a deep turbulent boundary layer. Based on a modern numerical platform, the Navier-Stokes equations with the typical two-equation model (i.e., the standard $k-{\varepsilon}$ model) were solved, and the results were compared with the wind tunnel measurement data. Regarding the turbulence model, the results of the $k-{\varepsilon}$ model are in overall agreement with the experimental results, including the existing data. However, because of the blockage effects in the computational domain, the pressure recovery region is underpredicted compared to the experimental data. In addition, the $k-{\varepsilon}$ model sometimes will fail to capture the exact flow features. The primary emphasis in this study is on the flow characteristics around rectangular bodies with various aspect ratios and approaching wind directions. The aspect ratio and wind direction influence the type of wake that is generated and ultimately the structural loading and pressure, and in particular, the structural excitation. The results show that the surface pressure variation is highly dependent upon the approaching wind direction, especially on the top and side faces of the cube. In addition, the transverse width has a substantial effect on the variations in surface pressure around the bodies, while the longitudinal length has less influence compared to the transverse width.

Development and validation of a non-linear k-ε model for flow over a full-scale building

  • Wright, N.G.;Easom, G.J.;Hoxey, R.J.
    • Wind and Structures
    • /
    • v.4 no.3
    • /
    • pp.177-196
    • /
    • 2001
  • At present the most popular turbulence models used for engineering solutions to flow problems are the $k-{\varepsilon}$ and Reynolds stress models. The shortcoming of these models based on the isotropic eddy viscosity concept and Reynolds averaging in flow fields of the type found in the field of Wind Engineering are well documented. In view of these shortcomings this paper presents the implementation of a non-linear model and its evaluation for flow around a building. Tests were undertaken using the classical bluff body shape, a surface mounted cube, with orientations both normal and skewed at $45^{\circ}$ to the incident wind. Full-scale investigations have been undertaken at the Silsoe Research Institute with a 6 m surface mounted cube and a fetch of roughness height equal to 0.01 m. All tests were originally undertaken for a number of turbulence models including the standard, RNG and MMK $k-{\varepsilon}$ models and the differential stress model. The sensitivity of the CFD results to a number of solver parameters was tested. The accuracy of the turbulence model used was deduced by comparison to the full-scale predicted roof and wake recirculation zone lengths. Mean values of the predicted pressure coefficients were used to further validate the turbulence models. Preliminary comparisons have also been made with available published experimental and large eddy simulation data. Initial investigations suggested that a suitable turbulence model should be able to model the anisotropy of turbulent flow such as the Reynolds stress model whilst maintaining the ease of use and computational stability of the two equations models. Therefore development work concentrated on non-linear quadratic and cubic expansions of the Boussinesq eddy viscosity assumption. Comparisons of these with models based on an isotropic assumption are presented along with comparisons with measured data.

Conception and Modeling of a Novel Small Cubic Antenna Design for WSN

  • Gahgouh Salem;Ragad Hedi;Gharsallah Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.53-58
    • /
    • 2024
  • This paper presents a novel miniaturized 3-D cubic antenna for use in wireless sensor network (WSN) application. The geometry of this antenna is designed as a cube including a meander dipole antenna. A truly omnidirectional pattern is produced by this antenna in both E-plane and H-plane, which allows for non-intermittent communication that is orientation independent. The operating frequency lies in the ISM band (centered in 2.45 GHz). The dimensions of this ultra-compact cubic antenna are 1.25*1.12*1cm3 which features a length dimension λ/11. The coefficient which presents the overall antenna structure is Ka=0.44. The cubic shape of the antenna is allowing for smart packaging, as sensor equipment may be easily integrated into the cube hallow interior. The major constraint of WSN is the energy consumption. The power consumption of radio communication unit is relatively high. So it is necessary to design an antenna which improves the energy efficiency. The parameters considered in this work are the resonant frequency, return loss, efficiency, bandwidth, radiation pattern, gain and the electromagnetic field of the proposed antenna. The specificity of this geometry is that its size is relatively small with an excellent gain and efficiency compared to previously structures (reported in the literature). All results of the simulations were performed by CST Microwave Studio simulation software and validated with HFSS. We used Advanced Design System (ADS) to validate the equivalent scheme of our conception. Input here the part of summary.