• Title/Summary/Keyword: Cube Model

Search Result 163, Processing Time 0.021 seconds

Theoretical Study of Various Unit Models for Biomedical Application

  • Choi, Jeongho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.4
    • /
    • pp.387-394
    • /
    • 2019
  • This paper presents an analytical study on the strength and stiffness of various types of truss structures. The applied models are triangular-like opened truss-wall triangular model (OTT), closed truss-wall triangular model (CTT), opened solid-wall triangular model (OST), and hypercube models defined as core-filled or core-spaced cube. The models are analyzed by numerical model analysis using DEFORM 2D/3D tool with AISI 304 stainless steel. Then, the ideal solutions for stiffness and strength are defined. Finally, the relative elastic modulus of the core-spaced model is obtained as 0.0009, which is correlated with the cancellous bone for the relative density range of 0.029-0.03, and the relative elastic modulus for the core-filled model is obtained as 0.0015, which is correlated with cancellous bone for the relative density range of 0.035-0.036. For the relative compressive yield strength, the OTT reasonably agrees with the cancellous bone for the relative density of 0.042 and the relative compressive strength of 0.05. The CTT and OST are in good agreement at the relative density of 0.013 and the relative compressive yield strength of 0.002. The hypercube models can be used for the cancellous bone for stiffness, and the triangular models can be used for the cancellous bone for strength. However, none of the models can be used to replace the compact bone because it requires much higher stiffness and strength. In the near future, compact bone replacement must be further studied. In addition, previously mentioned models should be developed further.

Prediction of Blank Thickness Variation in a Deep Drawing Process Using Deep Neural Network (심층 신경망 기반 딥 드로잉 공정 블랭크 두께 변화율 예측)

  • Park, K.T.;Park, J.W.;Kwak, M.J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.29 no.2
    • /
    • pp.89-96
    • /
    • 2020
  • The finite element method has been widely applied in the sheet metal forming process. However, the finite element method is computationally expensive and time consuming. In order to tackle this problem, surrogate modeling methods have been proposed. An artificial neural network (ANN) is one such surrogate model and has been well studied over the past decades. However, when it comes to ANN with two or more layers, so called deep neural networks (DNN), there is distinct a lack of research. We chose to use DNNs our surrogate model to predict the behavior of sheet metal in the deep drawing process. Thickness variation is selected as an output of the DNN in order to evaluate workpiece feasibility. Input variables of the DNN are radius of die, die corner and blank holder force. Finite element analysis was conducted to obtain data for surrogate model construction and testing. Sampling points were determined by full factorial, latin hyper cube and monte carlo methods. We investigated the performance of the DNN according to its structure, number of nodes and number of layers, then it was compared with a radial basis function surrogate model using various sampling methods and numbers. The results show that our DNN could be used as an efficient surrogate model for the deep drawing process.

Pre-swirl Nozzle Geometry Optimization to Increase Discharge Coefficient Using CFD Analysis (Pre-swirl system의 유량계수 향상을 위한 Pre-swirl nozzle의 형상 최적화 전산해석 연구)

  • Lee, Hyungyu;Lee, Jungsoo;Kim, Donghwa;Cho, Jinsoo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.21-28
    • /
    • 2017
  • Optimization process of pre-swirl nozzle geometry was conducted to improve the discharge coefficient of pre-swirl system by using CFD. The optimization of pre-swirl nozzle shape covered the converging angle and the location of the converging nozzle. Optimization process included Optimal Latin Hyper-cube Design method to get the experimental points and the Kriging method to create the response surface which gives candidate points. The process was finished when the difference between the predicted value and CFD value of candidate point was less than 0.1 %. This paper compared the Reference model, Initial model which is the first model of optimization and Optimized model to study flow characteristics. Finally, the discharge coefficient of Optimized model is improved about 17 % to the Reference model.

Kansei Comparison of Form-ratio between Cubic Model and Refrigerator

  • Nishino, Tatsuo;Nagamachi, Mitsuo
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.133-137
    • /
    • 2000
  • Form-ratio means the ratio of Height/Width/Depth in 3-dimensions. The golden ratio or golden section is included as one of the form-ratio. Kansei Engineering System has some basic design databases. Form-ratio and color are basic design elements and they are very important for designing various products in viewpoint of Kansei Engineering. The subjects evaluate the form-ratios of 3-dimensional cubes and virtual products (refrigerator) with SD-scale kansei words(feelings and images). The golden ration was evaluated as "not beautiful" in refrigerator. We compared with the kansei of cube model and virtual product, and obtained databases of the relationship between the form-ratio and kansei.

  • PDF

Computer modeling of tornado forces on buildings

  • Selvam, R. Panneer;Millett, Paul C.
    • Wind and Structures
    • /
    • v.6 no.3
    • /
    • pp.209-220
    • /
    • 2003
  • A tornado changes its wind speed and direction rapidly; therefore, it is difficult to study the effects of a tornado on buildings in a wind tunnel. In this work, the status of the tornado-structure interaction is surveyed by numerical simulation. Various models of the tornado wind field found in literature are surveyed. Three-dimensional computer modeling work using the turbulence model based on large eddy simulation is presented. The effect of tornado on a cubic building is considered for this study. The Navier-Stokes (NS) equations are approximated by finite difference method, and solved by a semi-implicit procedure. The force coefficients are plotted in time to study the effect of the Rankine-Combined Vortex Model. Some flow visualizations are also reported to understand the flow behavior around the cube.

Extension of a cable in the presence of dry friction

  • Huang, Xiaolun;Vinogradov, Oleg G.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.3
    • /
    • pp.313-329
    • /
    • 1996
  • A mathematical model of a cable as a system of interacting wires with interwire friction taken into account is presented in this paper. The effect of friction forces and the interwire slip on the mechanical properties of tension cables is investigated. It is shown that the slip occurs due to the twisting and bending deformations of wires, and it occurs in the form of micro-slips at the contact patches and macro-slips along the cable. The latter slipping starts near the terminals and propagates towards the middle of the cable with the increase of tension, and its propagation is proportional to the load. As the result of dry friction, the load-elongation characteristics of the cable become quadratic. The energy losses during the extension are shown to be proportional to the cube of the load and in inverse proportion to the friction force, a result qualitatively similar to that for lap joints. Presented examples show that the model is in qualitative agreement with the known experimental data.

Dielectric and Piezoelectric of Ceramic-Polymer Composite with Ceramic Particle Size (세라믹 분말 크기가 압전 세라믹-폴리머 복합체의 유전 및 압전 특성에 미치는 영향)

  • 이형규;김호기
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1989.06a
    • /
    • pp.63-65
    • /
    • 1989
  • Piezoelectric BaTiO$_3$-polymer composite were investigated for dielectric and piezoelectric properties with the barium titanate active particle size. Under the condition of the same density and ceramic volume ratio of composite, the dielectric and piezoelectric constant of composite are increasing as the ceramic particle size in composite are increasing. The surface layer model was quoted to explain these phenomena in our system and experimentally confirmed. The connectivity parameter of modified cube model of composite was calculated from the dielectric constant variation as their particle size. The connectivity parameter X and Y were 77.8% and 98.9% respectively. It means that the barium titanate particle distribution in composite nearly approach to the parallel mode. It was experimentally confirmed that the surface layer has low dielectric and nonferroelectric properties. Dielectric constant and thickness of surface layer were calculated from the equivalent circuit of composite.

  • PDF

A GUIDE FOR NUMERICAL WIND TUNNEL ANALYSIS IN ORDER TO PREDICT WIND LOAD ON A BUILDING (건축물의 풍하중을 예측하기 위한 수치풍동기법)

  • Lee, Mung-Sung;Lee, June-Hee;Hur, Nahm-Keon;Choi, Chang-Koon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.5-9
    • /
    • 2010
  • A numerical wind tunnel simulation is performed in order to predict wind loads acting on a building. The aim of the present study is to suggest a guideline for the numerical wind tunnel analysis, which could provide more detail wind load distributions compared to the wind code and expensive wind tunnel experiments. To validate the present numerical simulation, wind-induced loads on a 6 m cube model is predicted. Atmospheric boundary layer is used as a inlet boundary condition. Various effect of numerical methods are investigated such as size of computational domain, grid density, turbulence model and discretization scheme. The appropriate procedure for the numerical wind tunnel analysis is suggested through the present study.

  • PDF

Personal Computer Aided 3-D Model Generation (I) (PC를 이용한 3차원 입체형상 모델생성 연구 (I))

  • 변문현;오익수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.59-66
    • /
    • 1989
  • The purpose of this study is to develop a personal computer aided 3-D geometric modeller. To perform this study, we set up a cube, cylinder, and a prism as primitives in the first segment of this study. By modelling the 3-D object through their transformation, addition, and subtraction, we proved the validity of the developed algorithm and its computer program. Some examples show the results of applying the program to model a few simple shapes of the machine parts. These results met the first aim of this study.

Machining Accuracy Improvement by On Machine Part Measurement and Error Compensation (기상측정시스템과 오차보정을 이용한 가공정밀도 향상)

  • 최진필;민병권;이상조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.34-41
    • /
    • 2003
  • This paper suggests a methodology fur improving the machining accuracy by compensating for the machining errors based on on-machine measurement process. Probing errors and machine tool errors included in the measurement data were calibrated or compensated to obtain the actual machining errors. Machine tool errors were modeled in forward and backward directions according to the axis movement direction to consider the effects of backlash errors on the measurement data, and model parameters were determined by measuring a cube array artifact. A rectangular workpiece was machined and then measured with a touch probe as a verification experiment. Machining experiments showed that the machining errors were reduced to within the designated tolerance after compensating for the actual machining errors by modifying the original footpath for the next-step machining.