• 제목/요약/키워드: CuSn thin films

검색결과 60건 처리시간 0.031초

Surface Analysis of Copper-Tin Thin Films Synthesized by rf Magnetron Co-sputtering

  • 강유진;박주연;강용철
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.272.2-272.2
    • /
    • 2016
  • Copper-Tin (CuSn) thin films were synthsized by rf magnetron co-sputtering method with pure Cu and Sn metal targets with various rf powers and sputtering times. The obtained CuSn thin films were characterized by a surface profiler (alpha step), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray induced Auger electron spectroscopy (XAES), and contact angle measurement. The deposition rates were calculated by the thickness of CuSn thin films and sputtering times. We observed hexagonal Cu20Sn6 and cubic Cu39Sn11 phases from the films by XRD measurement. From the survey XPS spectra, the Cu and Sn main peaks were observed. Therefore, we could conclude CuSn thin films were successfully fabricated on the substrate in this study. The changes of oxidation states and chemical environment of the films were investigated with high resolution XPS spectra in the regions of Cu 2p, Cu LMM, and Sn 3d. Surface free energy (SFE) and wettability of the CuSn thin films were studied with distilled water (DW) and ethylene glycol (EG) using the contact angle measurement. The total SFE of CuSn thin films decreased as rf power on Cu target increased. The contribution to the total SFE of dispersive SFE was relatively superior to polar SFE.

  • PDF

Surface analysis of CuSn thin films obtained by rf co-sputtering method

  • 강유진;박주연;정은강;강용철
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.175.1-175.1
    • /
    • 2015
  • CuSn thin films were deposited by rf magnetron co-sputtering method with pure Cu and Sn metal targets with a variety of rf powers. CuSn thin films were studied with a surface profiler (alpha step), X-ray photoelectron spectroscopy (XPS), X-ray induced Auger electron spectroscopy (XAES), X-ray diffraction (XRD), and contact angle measurement. The thickness of CuSn thin films was fixed at $200{\pm}10nm$ and deposition rate was calculated by the measured with a surface profiler. From the survey XPS spectra, the characteristic peaks of Cu and Sn were observed. Therefore, CuSn thin films were successfully synthesized on the Si (100) substrate. The oxidation state and chemical environment of Cu and Sn were investigated with the binding energy regions of Cu 2p XPS spectra, Sn 3d XPS spectra, and Cu LMM Auger spectra. Change of the crystallinity of the films was observed with XRD spectra. Using contact angle measurement, surface free energy (SFE) and wettability of the CuSn thin films were studied with distilled water (DW) and ethylene glycol (EG).

  • PDF

Antibacterial property and characterization of CuSn thin films deposited by RF magnetron co-sputtering method

  • 강유진;박주연;김동우;김학준;강용철
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.360.2-360.2
    • /
    • 2016
  • CuSn thin films were fabricated by rf magnetron co-sputtering method on the Si(100) substrate for evaluation of the antibacterial effect. The co-sputtering process was performed with different rf powers and sputtering times to regulate the thickness of the films and relative atomic ratio of Cu to Sn. The physicochemical properties of the CuSn thin films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray induced Auger electron spectroscopy (XAES), Optical microscope (OM), 4-point probe, and antibacterial test. An antibacterial test was conducted with Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) as changing contact times between CuSn fillms and bacteria suspension. We compared to the crystalline structures of films before sterilization and after sterilization by XRD measurement. The changes of oxidation states of Cu and Sn and the chemical environment of films before and after antibacterial test were investigated with high resolution XPS spectra in the regions of Cu 2p, Cu LMM, and Sn 3d. After antibacterial test, the morphology of the films was checked with an OM images. The electrical properties of the CuSn films such as surface resistance and conductivity were measured by using 4-point probe.

  • PDF

펄스 레이저 증착법으로 제작한 Cu2ZnSnS4 박막의 구조 특성 변화에 대한 증착 시간 효과 (Effect of the Deposition Time onto Structural Properties of Cu2ZnSnS4 Thin Films Deposited by Pulsed Laser Deposition)

  • 변미랑;배종성;홍태은;정의덕;김신호;김양도
    • 한국재료학회지
    • /
    • 제23권1호
    • /
    • pp.7-12
    • /
    • 2013
  • The $Cu_2ZnSnS_4$ (CZTS) thin film solar cell is a candidate next generation thin film solar cell. For the application of an absorption layer in solar cells, CZTS thin films were deposited by pulsed laser deposition (PLD) at substrate temperature of $300^{\circ}C$ without post annealing process. Deposition time was carefully adjusted as the main experimental variable. Regardless of deposition time, single phase CZTS thin films are obtained with no existence of secondary phases. Irregularly-shaped grains are densely formed on the surface of CZTS thin films. With increasing deposition time, the grain size increases and the thickness of the CZTS thin films increases from 0.16 to $1{\mu}m$. The variation of the surface morphology and thickness of the CZTS thin films depends on the deposition time. The stoichiometry of all CZTS thin films shows a Cu-rich and S-poor state. Sn content gradually increases as deposition time increases. Secondary ion mass spectrometry was carried out to evaluate the elemental depth distribution in CZTS thin films. The optimal deposition time to grow CZTS thin films is 150 min. In this study, we show the effect of deposition time on the structural properties of CZTS thin film deposited on soda lime glass (SLG) substrate using PLD. We present a comprehensive evaluation of CZTS thin films.

공증발과 열산화로 제조한 Ag-CuO-SnO2 박막에서 미세조직과 CO 가스 감지특성 (Microstructure and CO Gas Sensing Properties of Ag-CuO-SnO2 Thin Films Prepared by Co-Evaporation and Thermal Oxidation)

  • 지인걸;한규석;오재희;고태경
    • 한국세라믹학회지
    • /
    • 제46권4호
    • /
    • pp.429-435
    • /
    • 2009
  • In this study, we investigated microstructure and the CO gas sensing properties of Ag-CuO-$SnO_2$ thin films prepared by co-evaporation and subsequently thermal oxidation at air atmosphere. The sensitivity of a Cu-Sn films, thermally oxidized at $600^{\circ}C$, is strongly affected by the amount of Cu. At Cu:7 wt%-Sn:93 wt%, the film exhibited a maximum sensitivity of ${\sim}2.3$ to CO gas of 1000 ppm at $300^{\circ}C$. In contrast, the sensitivity of a Sn-Ag film did not change significantly with the amount of Ag. An enhanced sensitivity of ${\sim}3.7$ was observed in the film with a composition of Ag:3 wt%-Cu:4 wt%-Sn:93 wt%, when thermally oxidized at $600^{\circ}C$. In addition, this thin film shows a response time of ${\sim}80$ sec and a recovery time of ${\sim}450$ sec to 1000 ppm CO gas. The results demonstrate that the CO sensitivity of the Ag-CuO-$SnO_2$ thin films may be closely associated with coexistence of $SnO_2$ and SnO phase, decrease in average particle size, and a porous microstructure. We also suggest that co-evaporation and followed by thermal oxidation is a very simple and effective method to prepare oxide gas sensor thin films.

Study on Indium-free and Indium-reduced thin film solar absorber materials for photovoltaic application

  • ;김규호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.270-273
    • /
    • 2007
  • In this report, Indium-free and Indium-reduced thin film materials for solar absorber were studied in order to search alternative materials for thin film solar cell. The films of $Cu_2ZnSnSe_4$ and $Cu_2ZnSnSe_2$ were deposited using mixed binary chalcogenides powders. From the film bulk analysis result, it is observed that Cu concentration is a function of substrate temperature as well as CuSe mole ratio in the target. Under optimized conditions, $Cu_2ZnSnSe_4$ and $Cu_2ZnSnSe_2$ thin films grow with strong (112), (220/204) and (312/116) reflections. Films are found to exhibit a high absorption coefficient of $10^4$ $cm^{-1}$. $Cu_2ZnSnSe_4$ film shows a 1.5 eV band gap. On the other side, an increasing of optical band gap from 1.0 eV to 1.25 eV ($CuInSnSe_2$) is found to be proportional with an increasing of Zn concentration. All films have a p-type semiconductor characteristic with a carrier concentration in the order of $10^{14}$ $cm^{-3}$, a mobility about $10^1$ $cm^{2{\cdot}-1.}S^{-1}$ and a resistivity at the range of $10^2-10^6$ ${\Omega}{\cdot}m$.

  • PDF

Study on Indium-free and Indium-reduced thin film Solar absorber materials for photovoltaic application

  • Kim, Kyoo-Ho;Wibowo, Rachmat Adhi
    • 신재생에너지
    • /
    • 제3권4호
    • /
    • pp.54-62
    • /
    • 2007
  • In this paper, we report the research highlight on the preparation and characterization of Indium-free $Cu_2ZnSnSe_4$ and Indium-reduced $CulnZnSe_2$ thin films in order to seek the viability of these absorber materials to be applied in thin film solar cells. The films of $Cu_2ZnSnSe_4\;and\;CulnZnSe_2$ were prepared using mixed binary chalcogenides powders. It was observed that Cu concentration was a function of substrate temperature as well as CuSe mole ratio in the target. Under an optimized condition, $Cu_2ZnSnSe_4\;and\;CulnZnSe_2$ thin films grew with strong [112]. [220/204] and [312/116] reflections. Both $Cu_2ZnSnSe_4\;and\;CulnZnSe_2$ films were found to exhibit a high absorption coefficient of $104^4cm^{-1}\;Cu_2ZnSnSe_4$ film showed a band gap of 1.5eV which closes to the optimum band gap of an ideal solar absorber for a solar cell. On the other side, an increase of optical band gap from 1.0 to 1.25eV was found to be proportional with an increase of Zn concentration in the $CulnZnSe_2$ film. All films in this study revealed a p-type semiconductor characteristic.

  • PDF

열처리 시 S/Se 분말 비율에 따른 Cu2ZnSnSe4 (CZTSSe) 박막의 합성 및 특성 평가 (Studies on Effect of S/Se Ratio on the Properties of Cu2ZnSn(SxSe1-x)4 (CZTSSe) Thin Films by Sulfo-Selenization of Stacked Precursor Thin Films)

  • 강명길;;홍창우;김진혁
    • Current Photovoltaic Research
    • /
    • 제2권4호
    • /
    • pp.177-181
    • /
    • 2014
  • $Cu_2ZnSn(S_xSe_{1-x})_4$ (CZTSSe) absorber thin films were prepared on Mo coated soda lime glass substrates by sulfo-selenization of sputtered stacked Zn-Sn-Cu precursor thin films. The Zn-Sn-Cu precursor thin films were sulfo-selenized inside a graphite box containing S and Se powder using rapid thermal processing furnace at $540^{\circ}C$ in Ar atmosphere with pre-treatment at $300^{\circ}C$. The effect of different S/Se ratio on the structural, compositional, morphological and electrical properties of the CZTSSe thin films were studied using XRD (X-ray diffraction), XRF (X-ray fluorescence analysis), FE-SEM (field-emission scanning electron microscopy), respectively. The XRD, FE-SEM, XRF results indicated that the properties of sulfo-selenized CZTSSe thin films were strongly related to the S/Se composition ratio. In particular, the CZTS thin film solar cells with S/(S+Se)=0.25 shows best conversion efficiency of 4.6% ($V_{oc}$ : 348 mV, $J_{sc}$ : $26.71mA/cm^2$, FF : 50%, and active area : $0.31cm^2$). Further detailed analysis and discussion for effect of S/Se composition ratio on the properties CZTSSe thin films will be discussed.

Characterization of ZnO Nanorods and SnO2-CuO Thin Film for CO Gas Sensing

  • Lim, Jae-Hwan;Ryu, Jee-Youl;Moon, Hyung-Sin;Kim, Sung-Eun;Choi, Woo-Chang
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권6호
    • /
    • pp.305-309
    • /
    • 2012
  • In this study, ZnO nanorods and $SnO_2$-CuO heterogeneous oxide were grown on membrane-type gas sensor platforms and the sensing characteristics for carbon monoxide (CO) were studied. Diaphragm-type gas sensor platforms with built-in Pt micro-heaters were made using a conventional bulk micromachining method. ZnO nanorods were grown from ZnO seed layers using the hydrothermal method, and the average diameter and length of the nanorods were adjusted by changing the concentration of the precursor. Thereafter, $SnO_2$-CuO heterogeneous oxide thin films were grown from evaporated Sn and Cu thin films. The average diameters of the ZnO nanorods obtained by changing the concentration of the precursor were between 30 and 200 nm and the ZnO nanorods showed a sensitivity value of 21% at a working temperature of $350^{\circ}C$ and a carbon monoxide concentration of 100 ppm. The $SnO_2$-CuO heterogeneous oxide thin films showed a sensitivity value of 18% at a working temperature of $200^{\circ}C$ and a carbon monoxide concentration of 100 ppm.

Cu2ZnSnSe4 Thin Films Preparation by Pulsed Laser Deposition Using Powder Compacted Target

  • Kim, Kyoo-Ho;Wibowo, Rachmat Adhi;Alfaruqi, M.Hilmy;Ahn, Jong-Heon
    • 한국표면공학회지
    • /
    • 제44권5호
    • /
    • pp.185-189
    • /
    • 2011
  • $Cu_2ZnSnSe_4$ thin films for solar absorber application were prepared by pulsed laser deposition of a synthesized $Cu_2ZnSnSe_4$ compound target. The film's composition revealed that the deposited films possess an identical composition with the target material. Further film compositional control toward a stoichiometric composition was performed by optimizing substrate temperature, deposition time and target rotational speed. At the optimum condition, X-ray diffraction patterns of films showed that the films demonstrated polycrystalline stannite single phase with a high degree of (112) preferred orientation. The absorption coefficient of $Cu_2ZnSnSe_4$ thin films were above 104 cm.1 with a band gap of 1.45 eV. At an optimum condition, films were identified as a p type semiconductor characteristic with a resistivity as low as $10^{-1}{\Omega}cm$ and a carrier concentration in the order of $10^{17}cm^{-3}$.