• 제목/요약/키워드: CuInSe2

검색결과 580건 처리시간 0.032초

Performance Improvement by Controlling Se/metal Ratio and Na2S Post Deposition Treatment in Cu(In,Ga)3Se5 Thin-Film Solar cell

  • Cui, Hui-Ling;Kim, Seung Tae;Chalapathy, R.B.V.;Kim, Ji Hye;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • 제7권4호
    • /
    • pp.103-110
    • /
    • 2019
  • Cu(In,Ga)3Se5 (β-CIGS) has a band gap of 1.35 eV, which is an optimum value for high solar-energy conversion efficiency. The effects of Cu and Ga content on the cell performance were investigated previously. However, the effect of Se content on the cell performance is not well understood yet. In this work, β-CIGS films were fabricated by three-stage co-evaporation of elemental sources with various Se fluxes at the third stage instead of at all stages. The average composition of five samples was Cu1.05(In0.59,Ga0.41)3Sey, where the stoichiometric y value is 5.03 and the stoichiometric Se/metal (Se/M) ratio is 1.24. We varied the Se/metal ratio in a range from 1.18 to 1.28. We found that the best efficiency was achieved when the Se/M ratio was 1.24, which is exactly the stoichiometric value where the CIGS grains on the CIGS surface were tightly connected and faceted. With the optimum Se/M ratio, we were able to enhance the cell efficiency of a β-CIGS solar cell from 9.6% to 12.0% by employing a Na2S post deposition treatment. Our results indicate that Na2S post deposition treatment is very effective to enhance the cell efficiency to a level on par with that in α-CIGS cell.

Se 증발온도가 비진공 공정으로 제조한 CIS 광흡수층에 미치는 영향 (The effects of Se evaporation temperature on CIS absorber layer fabricated by non-vacuum process)

  • 박명국;안세진;윤재호;윤경훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.441-443
    • /
    • 2008
  • A non-vacuum process for fabrication of $CuInSe_2$ (CIS) absorber layer from the corresponding Cu, In solution precursors was described. Cu, In solution precursors was prepared by a room temperature colloidal route by reacting the starting materials $Cu(NO_3)_2$, $InCl_3$ and methanol. The Cu, In solution precursors were mixed with ethylcellulose as organic binder material for the rheology of the mixture to be adjusted for the doctor blade method. After depositing the mixture of Cu, In solution with binder on Mo/glass substrate, the samples were preheated on the hot plate in air to evaporate remaining solvents and to burn the organic binder material. Subsequently, the resultant CI/Mo/glass sample was selenized in Se evaporation in order to get a solar cell applicable dense CIS absorber layer. The CIS absorber layer selenized at $530^{\circ}C$ substrate temperature for 30 min with various Se gas evaporation temperature was characterized by XRD, SEM, EDS.

  • PDF

금속 프리커서의 셀렌화에 의한 $Cu_2ZnSnSe_4$ 박막의 특성 (Characterization of $Cu_2ZnSnSe_4$ thin film produced by selenization of metallic precursor)

  • 아말 무하마드;힐미 무함마드;장윤정;김규호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.85.2-85.2
    • /
    • 2010
  • $Cu_2ZnSnSe_4$ (CZTSe) is one of candidate to alternate $Cu(In,Ga)Se_2$ as solar absorber material for solar cell. The expensive elements of In and Ga are replaced by Zn and Sn, respectively to lower the material cost. In this study we fabricated CZTSe thin film by selenization of single precursor layer consisted metallic constituent. Precursor compositions ratio were selected to have Cu-poor and Zn-rich content and prepared by RF magnetron sputtering. Thermal processing was applied to introduce selenium into as-deposited films at temperatures ranging from 350 to 500 for time up to 120 minutes. Single precursor films showed amorphous structure and consist of individual elements of Cu, Zn, and Sn. It was confirmed by XRD analysis that synthesis of CZTSe compound is occurred from lower temperature process, although concurrently additional phases such as binary cooper selenides are also existed. The quality of CZTSe crystal was improved as temperature increased. We also investigated the optical and electrical properties of as-selenized CZTSe as well.

  • PDF

Synthesis of binary Cu-Se and In-Se nanoparticle inks using cherry blossom gum for CuInSe2 thin film solar cell applications

  • Pejjai, Babu;Reddy, Vasudeva Reddy Minnam;Seku, Kondaiah;Cho, Haeyun;Pallavolu, Mohan Reddy;Le, Trang Thi Thuy;Jeong, Dong-seob;Kotte, Tulasi Ramakrishna Reddy;Park, Chinho
    • Korean Journal of Chemical Engineering
    • /
    • 제35권12호
    • /
    • pp.2430-2441
    • /
    • 2018
  • Selenium (Se)-rich binary Cu-Se and In-Se nanoparticles (NPs) were synthesized by a modified heat-up method at low temperature ($110^{\circ}C$) using the gum exudates from a cherry blossom tree. Coating of CISe absorber layer was carried out using Se-rich binary Cu-Se and In-Se NPs ink without the use of any external binder. Our results indicated that the gum used in the synthesis played beneficial roles such as reducing and capping agent. In addition, the gum also served as a natural binder in the coating of CISe absorber layer. The CISe absorber layer was integrated into the solar cell, which showed a power conversion efficiency (PCE) of 0.37%. The possible reasons for low PCE of the present solar cells and the steps needed for further improvement of PCE were discussed. Although the obtained PCE is low, the present strategy opens a new path for the fabrication of eco-friendly CISe NPs solar cell by a relatively chief non-vacuum method.

비진공법 CuInSe2 태양전지에서 MoSe2의 생성을 억제하기 위한 산화 몰리브데늄 확산장벽 층 (Molybdenum Oxides as Diffusion Barrier Layers against MoSe2 Formation in A Nonvacuum Process for CuInSe2 Solar Cells)

  • 이병석;이도권
    • Current Photovoltaic Research
    • /
    • 제3권3호
    • /
    • pp.85-90
    • /
    • 2015
  • Two-step processes for preparing $Cu(In,Ga)Se_2$ absorber layers consist of precursor layer formation and subsequent annealing in a Se-containing atmosphere. Among the various deposition methods for precursor layer, the nonvacuum (wet) processes have been spotlighted as alternatives to vacuum-based methods due to their potential to realize low-cost, scalable PV devices. However, due to its porous nature, the precursor layer deposited on Mo substrate by nonvacuum methods often suffers from thick $MoSe_2$ formation during selenization under a high Se vapor pressure. On the contrary, selenization under a low Se pressure to avoid $MoSe_2$ formation typically leads to low crystal quality of absorber films. Although TiN has been reported as a diffusion barrier against Se, the additional sputtering to deposit TiN layer may induce the complexity of fabrication process and nullify the advantages of nonvacuum deposition of absorber film. In this work, Mo oxide layers via thermal oxidation of Mo substrate have been explored as an alternative diffusion barrier. The morphology and phase evolution was examined as a function of oxidation temperature. The resulting Mo/Mo oxides double layers were employed as a back contact electrode for $CuInSe_2$ solar cells and were found to effectively suppress the formation of $MoSe_2$ layer.

Preperation of CuInSe2 Nanoparticles by Solution Process Using Precyrsors

  • 최하나;이선숙;정택모;김창균
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.376-376
    • /
    • 2011
  • I-III-VI2 chalcopyrite compounds, particularly copper, indium, gallium selenide(Cu(InxGa1-x)Se2, CIGS), are effective light-absorbing materials in thin-film solar application. They are direct band-gap semiconductors with correspondingly high optical absorption coefficients. Also they are stable under long-term excitation. CIS (CIGS) solar cell reached conversion efficiencies as high as 19.5%. Several methods to prepare CIS (CIGS) absorber films have been reported, such as co-evaporation, sputtering, selenization, and electrodeposition. Until now, co-evaporation is the most successful technique for the preparation of CIS (CIGS) in terms of solar efficiency, but it seems difficult to scale up. CIS solar cells have been hindered by high costs associated with a fabrication process. Therefore, inorganic colloidal ink suitable for a scalable coating process could be a key step in the development of low-cost solar cells. Here, we will present the preparation of CIS photo absorption layer by a solution process using novel metal precursors. Chalcopyrite copper indium diselenide (CuInSe2) nanocrystals ranging from 5 to 20nm in diameter were synthesized by arrested precipitation in solution. For the fabrication of CIS photo absorption layer, the CuInSe2 colloidal ink was prepared by dispersing in organic solvent and used to drop-casting on molybdenum substrate. We have characterized the nanoparticless and CIS layer by XRD, SEM, TEM, and ICP.

  • PDF

직접 용액 코팅법에 의해 제조한 CuInSe2 에 잔존하는 탄소 불순물층 형성에 관한 연구 (On Formation of Residual Carbon Layer in CuInSe2 Thin Films Formed via direct Solution Coating Process)

  • 안세진;;어영주;곽지혜;윤경훈;조아라
    • Current Photovoltaic Research
    • /
    • 제2권1호
    • /
    • pp.36-39
    • /
    • 2014
  • Formation mechanism of residual carbon layer, frequently observed in the $CuInSe_2$ (CIS) thin film prepared by direct solution coating routes, was investigated in order to find a way to eliminate it. As a model system, a methanol solution with dissolved Cu and In salts, whose viscosity was adjusted by adding ethylcellulose (EC), was chosen. It was found that a double layer, a top metal ion-derived film and bottom EC-derived layer, formed during an air drying step presumably due to different solubility between metal salts and EC in methanol. Consequently, the top metal ion-derived film acts as a barrier layer inhibiting further thermal decomposition of underlying EC, resulting a formation of bottom carbon residue layer.

The Properties of HfO2 Thin Films by DC/RF Magnetron Sputtering and Thermal Evaporation Method

  • Jeong, Woon-Jo;Ahn, Ho-Geun;Kim, Young-Jun;Yang, Hyeon-Hun;Park, Gye-Choon
    • Transactions on Electrical and Electronic Materials
    • /
    • 제8권2호
    • /
    • pp.89-92
    • /
    • 2007
  • $CuInSe_2$ thin film were prepared in order to clarify optimum conditions for growth of the thin film depending upon process, and then by changing a number of deposition conditions and heat treatment conditions variously, structural and electrical characteristics were measured. Thereby, optimum process variables were derived. For the manufacture of the $CuInSe_2$, Cu, In and Se were deposited in the named order. Among them, Cu and In were deposited by using the sputtering method in consideration of their adhesive force to the substrate, and the DC/RF power was controlled so that the composition of Cu and In might be 1:1, while the annealing temperature having an effect on the quality of the thin film was changed from $200\;^{\circ}C$ to $350\;^{\circ}C$ at intervals of $50\;^{\circ}C$.

사료 내 유기태 및 무기태 미네랄(셀레늄, 구리)의 수준별 첨가가 산란계의 생산성과 계란 내 이행에 미치는 영향 (Effect of Dietary Organic or Inorganic Minerals (Selenium and Copper) on Layer's Production and Their Transfer into the Egg)

  • 박태순;김재영;유선종;이보근;김진만;김은집;안병기;강창원
    • 한국가금학회지
    • /
    • 제36권2호
    • /
    • pp.103-110
    • /
    • 2009
  • 본 시험에서는 산란계 사료에 Se과 Cu의 첨가가 산란계 생산성에 미치는 영향과 계란 내 이행에 미치는 영향을 조사하기 위해 수행하였다. 67주령의 Lohmann Brown 산란계를 이용하여 동일한 면적의 산란계 2수용 케이지에 모두 7개 처리구 5반복으로, 총 350수를 공시하여 2주간 일반 시판 사료로 예비 사육하였으며, 반복구 별로 산란율이 유사하도록 재배치한 후 시험에 이용하였으며, 5주간 실험을 실시하였다. 사료 섭취량, 산란율, 난중 및 일산란량에서는 처리 간에 큰 차이가 없었으며, 난각 강도, 난각 두께, 난황색 및 Haugh unit 등 난질 및 난각질 관련 지표에서도 처리 간에 큰 차이는 나타나지 않았다. 총 콜레스테롤, GOT 및 GPT 활성에서도 처리 간에 큰 차이가 없었다. Cu는 사료 내 첨가 수준에 따라 증가하는 경향이 관찰되었으나 유의한 차이는 인정되지 않았으며, Se는 사료 내 첨가 수준이 증가함에 따라 계란 내 이행량도 유의하게 증가한 것으로 나타났다. 유기태 Se과 무기태 Se 처리구에서는 유의한 차이는 없었으나, 유기태 Se 처리구에서 다소 높았다. 기타 관능검사는 유의한 차이를 발견할 수 없었다. 본 시험 결과, Se은 첨가 수준에 따라 비례하여 계란 내로 이행되는 것을 확인하였으며, 유기태 형태로의 공급과 무기태 형태로의 공급 모두 유의하게 이행되는 결과가 관찰되었다. Cu의 첨가 형태와 첨가 수준에 따른 계란 내 Cu의 이행은 Cu를 250 ppm 수준으로 급여하였을 때 계란 내 Cu 함량이 대조구에 비해 30% 정도 증가함으로써 Se에 비해서는 이행 효율이 상대적으로 낮은 경향을 보여 주었다. Se은 항산화 작용과 항암에 효과적임이 증명됨에 따라 소비자의 관심이 높은 미량 광물질로서 산란계를 이용하여 계란 내로 이행시킴으로 계란의 소비 증가와 양계 산업 발전을 위해 기능성 계란으로 활용 가능할 것으로 판단된다.

CuInSe2 태양전지 박막의 전해증착 및 성장형상 (Electrodeposition of CuInSe2 Photovoltaic Thin Films and Growth Morphology)

  • 고정환;김명한
    • 한국재료학회지
    • /
    • 제20권1호
    • /
    • pp.12-18
    • /
    • 2010
  • $CuInSe_2$ (CIS) thin films were electrodeposited on Mo-coated glass substrates in acidic solutions containing $Cu^{2+}$, $In^{3+}$, and $Se^{4+}$ ions, depending on deposition parameters such as deposition potential (-0.4 to -0.8 V[SCE]) and pH (1.7 to 1.9). The influences of PH and deposition potential on the atomic composition of Cu, In, and Se in the deposited films were observed. The best chemical composition, approaching 1:1:2 atomic ratio for the elements, was achieved at -0.5 V (SCE) and pH 1.8. The as-deposited films showed low crystallinity and were annealed at 300 to $500^{\circ}C$ for 30 min to improve crystallization. The surface morphologies, microstructures, and crystallographic structures of the annealed films as well as the as-deposited films were analyzed with AFM, SEM, and XRD. The defects of spherical particles appeared on the surfaces of CIS thin films in the as-deposited state and decreased in size and number with increasing annealing temperatures. Additionally, the crystallization to chalcopyrite structure and surface roughness (Ra) of the as-deposited thin films were improved with the annealing process.