• 제목/요약/키워드: CuInS2

검색결과 2,272건 처리시간 0.035초

벌크 비정질 Zr-Ti-Cu-Ni-Be 합금의 고온 소성 변형 특성 (High Temperature Plastic Deformation Behaviors of the Bulk Metallic Glass Zr-Ti-Cu-Ni-Be Alloy)

  • 이광석;하태권;안상호;장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.272-276
    • /
    • 2001
  • Multicomponent $Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ bulk matallic glass alloy shows good bulk glass forming ability due to its high resistance to crystallization in the undercooled liquid state.1) In this study, DSC and X-ray diffractometry have been performed to confirm the amorphous structure of the master $Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ alloy. To investigate the mechanical properties and deformation behaviors of the bulk metallic $Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ alloy, a series of compression tests has been carried out at the temperatures ranging from $351^{\circ}C$ to $461^{\circ}C$ and at the various initial strain rates from $2{\times}10^{-4}s^{-1}\;to\;2{\times}10^{-2}s^{-1}$. There are two types of nominal stress-strain curves. The one shows linear stress-strain relationship meaning fracture at maximum stress, the other shows plastic deformation including steady-state flow. Also DSC analysis for the compressed specimens has been performed to investigate the change of thermal stability and crystallization behavior for the various test conditions.

  • PDF

Photoluminescence of CuInS2/(Cd,Zn)S Nanocrystals as a Function of Shell Composition

  • Kim, Young-Kuk;Ahn, Si-Hyun;Choi, Gyu-Chae;Chung, Kook-Chae;Cho, Young-Sang;Choi, Chul-Jin
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권5호
    • /
    • pp.218-221
    • /
    • 2011
  • We modified the optical properties of the $CuInS_2$ nanocrystal (NC) by alloying. Nanocrystals (NCs) with alloyed cores were synthesized by refluxing the as-synthesized $CuInS_2$ NCs with a mixture of cadmium acetate, zinc acetate and palmitic acid. The shift in emission wavelength of the NCs after shell layer formation was minimized by alloying. The photoluminescence (PL) spectra showed significant reduction of emission intensity. A detailed study on the emission process of NCs implies that the formation of shell layers with small lattice mismatch minimized the mismatch strain generated from the shell layers in contrast to core alloyed NCs. In particular, time-resolved PL spectra of the NCs showed a significant increase in the lifetime of excited carriers by modifying the band alignment of the NCs by modifying the shell composition.

In-situ 법(法)에 의한 Cu-Fe 복합조직(複合組織)의 자기적(磁氣的) 특성(特性)에 미치는 가공(加工) 및 열처리(熱處理)의 영향(影響) (The Effect of Cold Working and Heat Treatment on the Magnetic Properties of in-situ Formed Cu-Fe Composites)

  • 서수정;박현순
    • 열처리공학회지
    • /
    • 제2권2호
    • /
    • pp.38-45
    • /
    • 1989
  • The Cu-Fe permanent magnet were prepared in situ process, which has economic and mass productive merits in producing multi filamentary composites. The purpose of this research was to study the effect of reduction ratio and heat treatment on magnetic property. As the reduction ratio of Cu-Fe wire increased, the filament structure became finer and interfilament distances decreased and the morphology of filament cross section became ribbon shape. As Fe content increased significantly. The coercivity and squareness of Cu-55 wt%Fe composite increased as a reduction ratio became higher, whereas they increased to maximum values at 0.09 mm ${\phi}$ for Cu-30 wt%Fe, and 0.066 mm ${\phi}$ for CU-45 wt%Fe respectively, and decreased for further reduction. The magnetic properties of Cu-Fe composites can be more enhanced by intermediate heat treatment. The best magnetic properties were obtained from Cu-55 wt%Fe composite deformed to 0.054 mm ${\phi}$ and annealed.

  • PDF

in situ법(法)에 의한 Cu-Fe계(系) 다섬유상(多纖維狀) 복합재료제조(複合材料製造)에 관한 연구(硏究) (A Study on Cu-Fe Multifilamentary Composites Produced by in situ Process)

  • 서수정;박현순
    • 열처리공학회지
    • /
    • 제4권2호
    • /
    • pp.9-18
    • /
    • 1991
  • Among the many maunfactured processes of producing multi filamentary composites, in situ process is widely used owing tv its simplicity and easyness of mass production. In this study, the mechanical and electromagnetic properties of Cu-Fe composite materials was investigated. The tensile strength of the Cu-Fe wires increased as the Fe content and reduction ratio were increased. The Cu-30 wt%Fe composites had the best properties in terms of figure merits compared to the other Cu-Fe composites made in this study or the commercially manufactured 6/1 ACSR cables of Cu cable. The coercivity was decreased by increasing Fe content, but the squareness was increased greatly. As increasing reduction ratio, the coercivity and squareness increased up to the maximum points, and then decreased. For example, the maximum values were obtained at $0.09mm{\phi}$ for Cu-30 wt%Fe composites and at $0.066mm{\phi}$ for Cu-45 wt%Fe composites. The magnetic property of Cu-Fe wires produced by precipitation treatment was higher than that of Cu-Fe wires produced by thermomechanical treatment. By annealing Cu-Fe wires after drawing process, the coercivity, remanence and squareness were improved.

  • PDF

$Cu^{++}$ 촉매작용에 의한 과산화 현상이 Collagen 손상에 관여함과 Sodium Salicylate에 의한 보호 작용 (Involvement of $Cu^{++}$-Catalyzed Peroxidation in Degradation of Collagen and Protective Mechanism of Sodium Salicylate on this Peroxidative Reaction)

  • 김용식
    • 대한약리학회지
    • /
    • 제23권1호
    • /
    • pp.25-31
    • /
    • 1987
  • $Cu^{++}$ 촉매작용에 의한 과산화현상이 관절조직손상의 한 형태인 Collagen 손상에 관여할 수 있음을 알아보고, sodium salicylate의 항 염증기전의 일부를 설명해 보고자 sodium salicylate가 이 과산화반응에 미치는 효과를 검토하였다. 쥐피부로 부터 얻은 Collagen을 이용하여 Collagen gelation에 대한 $Cu^{++}$$H_2O_2$의 효과를 관찰한 결과 $Cu^{++}$ 또는 $H_2O_2$ 단독으로는 gelation에 영향을 미치지 못하였으나, $Cu^{++}$$H_2O_2$가 동시에 첨가된 경우 gelation이 억제되어 maximal turbidity가 감소되고, lag phase가 연장됨을 보였다. 그리고 같은 반응 조건에서 sodium salicylate 첨가에 의해 $Cu^{++}$$H_2O_2$에 의해 억제된 gelation이 회복됨을 볼 수 있었으며 회복정도는 salicylate 농도 증가에 의존적이었다. 한편 $Cu^{++}$에 의한 $H_2O_2$의 decomposition rate가 sodium salicylate에 의해 증가됨을 보였고, salicylate 농도 증가에 의해 점차 saturation되는 양상을 보였다. 이상의 결과로 부터 $Cu^{++}$ 촉매작용에 의한 과산화 현상은 collagen에 작용하여 구조적 또는 기능적인 변화를 초래함을 알 수 있었고, salicylate에 의해 이러한 과산화 현상이 억제되는 것은 $Cu^{++}$에 의한 $H_2O_2$의 decomposition rate를 증가시킨 결과임을 알 수 있었다. 그러므로 $Cu^{++}$ 촉매작용에 의한 과산화현상은 만성염증 반응 특히 rheumatoid arthritis에서 나타나는 관절조직 손상에 관여할 수 있으며, sodium salicylate는 이 과산화반응에 작용하여 항 염증효과를 나타낼 수 있으리라 믿어졌다.

  • PDF

Na2S 하부층을 이용한 Cu(In,Ga)Se2 광흡수층의 저온증착 및 Cu(In,Ga)Se2 박막태양전지에의 응용 (Low-temperature Deposition of Cu(In,Ga)Se2 Absorber using Na2S Underlayer)

  • 신해나라;신영민;김지혜;윤재호;박병국;안병태
    • Current Photovoltaic Research
    • /
    • 제2권1호
    • /
    • pp.28-35
    • /
    • 2014
  • High-efficiency in $Cu(In,Ga)Se_2$ (CIGS) solar cells were usually achieved on soda-lime glass substrates due to Na incorporation that reduces deep-level defects. However, this supply of sodium from sodalime glass to CIGS through Mo back electrode could be limited at low deposition temperature. Na content could be more precisely controlled by supplying Na from known amount of an outside source. For the purpose, an $Na_2S$ layer was deposited on Mo electrode prior to CIGS film deposition and supplied to CIGS during CIGS film. With the $Na_2S$ underlayer a more uniform component distribution was possible at $350^{\circ}C$ and efficiency was improved compared to the cell without $Na_2S$ layer. With more precise control of bulk and surface component profile, CIGS film can be deposited at low temperature and could be useful for flexible CIGS solar cells.

Hot Walll Epitaxy (HWE)법에 의한 $CuInSe_2$ 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구 (Growth and Photocurrent Study on the Splitting of the Valence Band for $CuInSe_2$ Single Crystal Thin Film by Hot Wall Epitaxy)

  • 윤석진;홍광준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.234-238
    • /
    • 2004
  • A stoichiometric mixture of evaporating materials for $CuInSe_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $CuInSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $620^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuInSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $9.62{\times}10^{l6}\;cm^{-3}$ and $296\;cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CuInSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)\;=\;1.1851\;eV\;-\;(8.99{\times}10^{-4}\;eV/K)T^2/(T+153K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $CuInSe_2$ have been estimated to be 0.0087 eV and 0.2329 eV at 10K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}_{so}$ definitely exists in the $\Gamma_6$ states of the valence band of the $CuInSe_2$. The three photocurrent peaks observed at 10K are ascribed to the $A_1-$, $B_1-$, and $C_1$-exciton peaks for n = 1.

  • PDF

Mo 유연기판을 이용한 Cu2SnS3 박막 태양전지의 셀레늄 도핑 효과 (Effect of Selenium Doping on the Performance of Flexible Cu2SnS3(CTS) Thin Film Solar Cells)

  • 이인재;조은애;장준성;이병훈;이동민;강창현;문종하
    • 한국재료학회지
    • /
    • 제30권2호
    • /
    • pp.68-73
    • /
    • 2020
  • Due to its favorable optical properties, Cu2SnS3 (CTS) is a promising material for thin film solar cells. Doping, which modifies the absorber properties, is one way to improve the conversion efficiency of CTS solar cells. In this work, CTS solar cells with selenium doping were fabricated on a flexible substrate using sputtering method and the effect of doping on the properties of CTS solar cells was investigated. In XRD analysis, a shift in the CTS peaks can be observed due to the doped selenium. XRF analysis confirmed the different ratios of Cu/Sn and (S+Se)/(Cu+Sn) depending on the amount of selenium doping. Selenium doping can help to lower the chemical potential of sulfur. This effectively reduces the point defects of CTS thin films. Overall improved electrical properties were observed in the CTS solar cell with a small amount of selenium doping, and a notable conversion efficiency of 1.02 % was achieved in the CTS solar cell doped with 1 at% of selenium.

Cu(In,Ga)Se2/CdS 계면 형성 조건에 따른 Cu(In,Ga)Se2 박막 태양전지의 특성

  • 최해원;조대형;정용덕;김경현;김제하
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.374-374
    • /
    • 2011
  • Cu(In,Ga)Se2 (CIGS) 박막 태양전지는 일반적으로 Soda lime glass/Mo/CIGS/CdS/ZnO/ITO/Al의 구조로 제작된다. 태양전지는 p형과 n형 반도체의 접합에 의해서 동작을 하게 되며, CIGS 박막 태양전지에서는 p형으로 CIGS 박막과 n형으로 CdS 박막이 사용된다. CIGS 박막태양전지에서는 p형과 n형이 서로 다른 물질로 이루어진 이종접합을 이루게 되고, 계면에서의 밴드가 어떻게 형성이 되느냐에 따라 태양전지 성능에 영향을 미치게 된다. p형의 CIGS 박막은 주로 다단계 증발법에 의해 형성되고 3단계 공정조건에 의해 계면의 특성에 많은 영향을 미치게 된다. n형의 CdS 박막은 주로 chemical bath deposition (CBD) 법에 의해 제작된다. 이렇게 제작되는 CBD-CdS는 시약의 농도, pH (수소이온농도), 박막 형성시의 온도 등의 조건에 따라 특성이 변하게 된다. 본 논문에서는 3단계 공정시간을 변화시켜 제작된 CIGS 박막 위에 CBD-CdS 증착 조건 중 thiourea 의 농도를 변화시켜 CIGS 태양전지를 제작하고 그에 따른 특성을 살펴보았다. CIGS 박막은 3단계 공정시간을 490초와 360초로 하여 제작하였고, CdS 박막은 thiourea 농도를 각각 0.025 M과 0.05 M, 0.074 M, 0.1 M로 변화시켜가며 제작하였다. 제작된 CIGS 박막 태양전지는 CIGS 3단계 공정시간과 thiourea의 조건에 따라 최고 15.81%, 최저 14.13%로 나타내었다. 또한, 외부양자효율을 측정하여 제작된 CIGS 박막 태양전지의 파장에 따른 특성을 비교하였다.

  • PDF

Hot Wall Epitaxy (HWE)법에 의한 $CuInSe_2$ 단결정 박막 성장과 점결함 (Growth and photoluminescience propeties for $CuInSe_2$ single crystal thin film by Hot Wall Epitaxy)

  • 홍광준;이상열
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.111-112
    • /
    • 2005
  • To obtain the single crystal thin films, $CuInSe_2$, mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wail epitaxy (HWE) system. The source and substrate temperatures were 620$^{\circ}C$ and 410$^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobilily of $CuInSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $9.62\times10^{16}$ $cm^{-3}$ and $296cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the CulnSe$_2$ obtained from the absorption spectra was well described by the Varshni's relation E$_g$(T) = 1.1851 eV - ($8.99\times10^{-4}$ ev/K)T$_2$/(T + 153K). After the as-grown $CuInSe_2$ single crystal thin films was annealed in Cu-, Se-, and In-atmospheres the origin of point defects of $CuInSe_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The nat ive defects of V$_{Cu}$, $V_{Se}$, Cu$_{int}$, and $Se_{int}$ obtained by PL measurements were classified as a donors or accepters type. And we concluded that the heat-treatment in the Cu-atmosphere converted $CuInSe_2$ single crystal thin films to an optical n-type. Also, we confirmed that In in $CuInSe_2$/GaAs did not form the native defects because In in $CuInSe_2$ single crystal thin films existed in the form of stable bonds.

  • PDF