• Title/Summary/Keyword: CuInS-ZnS

Search Result 989, Processing Time 0.027 seconds

Effects of Al3+ precipitation onto primitive amorphous Cu-Zn precipitate on methanol synthesis over Cu/ZnO/Al2O3 catalyst

  • Jeong, Cheonwoo;Park, Jongha;Kim, Jinsung;Baik, Joon Hyun;Suh, Young-Woong
    • Korean Journal of Chemical Engineering
    • /
    • v.36 no.2
    • /
    • pp.191-196
    • /
    • 2019
  • The phase of Cu,Zn,Al precursors strongly affects the activity of their final catalysts. Herein, the Cu,Zn,Al precursor was prepared by precipitation of $Al^{3+}$ onto primitive, amorphous Cu,Zn precipitate. This precursor turned out to be a phase mixture of zincian malachite and hydrotalcite in which the latter phase was less abundant compared to the co-precipitated precursor. The final catalyst derived from this precursor exhibited a little higher copper surface area and methanol synthesis activity than the co-precipitated counterpart. Therefore, the two precursor phases need to be mixed in an adequate proportion for the preparation of active $Cu/ZnO/Al_2O_3$ catalyst.

Effects of Se/(S+Se) Ratio on Cu2ZnSn(SxSe1-x)4 (CZTSSe) Thin Film Solar Cells Fabricated by Sputtering

  • Park, Ju Young;Hong, Chang Woo;Moon, Jong Ha;Gwak, Ji Hye;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.75-79
    • /
    • 2015
  • Recently, $Cu_2ZnSn(S_xSe_{1-x})_4$ (CZTSSe) has been received a tremendous attraction as light absorber material in thin film solar cells (TFSCs), because of its earth abundance, inexpensive and non-toxic constituents and versatile material characteristics. Kesterite CZTSSe thin films were synthesized by sulfo-selenization of sputtered Cu/Sn/Zn stacked metallic precursors. The sulfo-selenization of Cu/Sn/Zn stacked metallic precursor thin films has been carried out in a graphite box using rapid thermal annealing (RTA) technique. Annealing process was done under sulfur and selenium vapor pressure using Ar gas at $520^{\circ}C$ for 10 min. The effect of tuning Se/(S+Se) precursor composition ratio on the properties of CZTSSe films has been investigated. The XRD, Raman, FE-SEM and XRF results indicate that the properties of sulfo-selenized CZTSSe thin films strongly depends on the Se/(S+Se) composition ratio. In particular, the CZTSSe TFSCs with Se/(S+Se) = 0.37 exhibits the best power conversion efficiency of 4.83% with $V_{oc}$ of 467 mV, $J_{sc}$ of $18.962mA/cm^2$ and FF of 54%. The systematic changes observed with increasing Se/(S+Se) ratio have been discussed in detail.

Effects of Combined Micronutrient(Fe, Mn, Cu, Zn, Mo and B) Application on Forage Traits in Pure and Mixed Swards of Orchardgrass and White Clover IV. Changes in the contents of micronutrients in forage plants (Orchardgrass 및 White Clover의 단파 및 혼파 재배에서 미량요소(Fe, Mn, Cu, Zn, Mo, B)의 조합시비가 목초의 여러 특성에 미치는 영향 IV. 목초 중 미량요소(Fe, Mn, Cu, Zn, Mo, B)의 함량 변화)

  • Jung, Yeun-Kyu
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.24 no.1
    • /
    • pp.11-20
    • /
    • 2004
  • This pot experiment was conducted to investigate the effects of combined micronutrient application($T_1$;control, $T_2$; Fe, $T_3$; Fe+Mn, $T_4$: Fe+Mn+Cu, $T_5$ ; Fe+Mn+Cu+Zn, $T_6$ ; Fe+Mn+Cu+Zn+Mo, $T_7$ ;Fe+Mn+Cu+Zn+Mo+B) on forage performance of pure and mixed cultures of orchardgrass and white clover. This 4th part was related to the changes in the contents of micronutrients(Fe, Mn, Cu, Zn, Mo, and B) in forages. The results obtained are summarized as follows: 1. General differences have been showed in the contents of micronutrients based on the treatments, forage species, pure/mixed culture, cutting order, and additional fertilization, especially N. Compared to pure culture, orchardgrass showed relatively high contents of Mn and Zn, and low contents of B and Fe in mixed culture. White clover, however, tended to be exactly opposed to the above trends. The contents of Cu and Mo did not show any differences between pure and mixed cultures. 2. In relative comparison, the $T_7$ influenced negatively on the contents of Cu, Zn, and Mo in orchardgrass. The $T_7$ also influenced negatively on the contents of Mo in white clover. However, the $T_7$ influenced positively on the contents of Mn in orchardgrass, and also influenced positively on the contents of Fe, Mn, and Cu in white clover. Because of the antagonism between Fe and Mn, the Fe contents in both forages were significantly decreased by the $T_3$. Under the various conditions, the differences among Fe contents tended to be more significant in white clover than in orchardgrass. 3. At the $T_6$ and $T_7$, the Mo contents in both forages tended to be relatively high. The Mo contents, however, were somewhat decreased by the $T_7$ 7/. The Mo-toxicity, which was caused by the high Mo-contents, tended to be diminished, and was likely to be prevented by the optimum B/Mo ratio and B application($T_7$ ).

In-situ XPS Study of Core-levels of ZnO Thin Films at the Interface with Graphene/Cu

  • Choi, Jinsung;Jung, Ranju
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1546-1549
    • /
    • 2018
  • We have investigated core-levels of ZnO thin films at the interface with the graphene on Cu foil using in-situ X-ray Photoelectron Spectroscopy (XPS). Spectral evolution of C 1s, Zn 2p, and O 1s are observed in real time during RF sputtering deposition. We found binding energy (BE) shifts of Zn 2p and 'Zn-O' state of O 1s depending on ZnO film thickness. Core-levels BE shifts of ZnO will be discussed on the basis of electron transfer at the interface and it may have an important role in the electronic transport property of the ZnO/graphene-based electronic device.

White ACPEL Device with ZnS:Cu,Cl, $Tb_3Al_5O_{12}:Ce^{3+}$, and CaS:$Eu^{2+}$ Phosphors Using a Layered Structure

  • Park, Bong-Je;Seo, Hong-Seok;Ahn, Jun-Tae;Oh, Dae-Kon;Chung, Woon-Jin;Han, Ji-Yeon;Jang, Ho-Seong;Jeon, Duk-Young
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.803-805
    • /
    • 2009
  • Improvement of the color rendering index (CRI) and luminance of a white alternate current powder electroluminescent (ACPEL) device has been attempted using ZnS:Cu,Cl, $Tb_3Al_5O_{12}$:Ce (TAG:Ce), and CaS:Eu phosphors with a layered structure. The device with TAG:Ce and ZnS:Cu,Cl phosphors showed a CRI of 75, with a luminance increase of about 30% depending on the thickness of the TAG:Ce. Further CRI improvement was attempted using CaS:Eu. When they were separately screen-printed, the CRI was increased up to 89 with no decrease in luminance.

Issues pertaining to Mg, Zn and Cu in the 2020 Dietary Reference Intakes for Koreans

  • Chung, Hae-Yun;Lee, Mi-Kyung;Kim, Wookyoung;Choi, Mi-Kyeong;Kim, Se-Hong;Kim, Eunmee;Kim, Mi-Hyun;Ha, Jung-Heun;Lee, Hongmie;Bae, Yun-Jung;Kwun, In-Sook
    • Nutrition Research and Practice
    • /
    • v.16 no.sup1
    • /
    • pp.113-125
    • /
    • 2022
  • In the current years, it has now become necessary to establish standards for micronutrient intake based on scientific evidence. This review discusses issues related to the development of the 2020 Dietary Reference Intakes for Koreans (KDRI) for magnesium (Mg), zinc (Zn), and copper (Cu), and future research directions. Following issues were encountered when establishing the KDRI for these minerals. First, characteristics of Korean subjects need to be applied to estimate nutrient requirements. When calculating the estimated average requirement (EAR), the KDRI used the results of balance studies for Mg absorption and factorial analysis for Zn, which is defined as the minimum amount to offset endogenous losses for Zn and Mg. For Cu, a combination of indicators, such as depletion/repletion studies, were applied, wherein all reference values were based on data obtained from other countries. Second, there was a limitation in that it was difficult to determine whether reference values of Mg, Zn, and Cu intakes in the 2020 KDRI were achievable. This might be due to the lack of representative previous studies on intakes of these nutrients, and an insufficient database for Mg, Zn, and Cu contents in foods. This lack of database for mineral content in food poses a problem when evaluating the appropriateness of intake. Third, data was insufficient to assess the adequacy of Mg, Zn, and Cu intakes from supplements when calculating reference values, considering the rise in both demand and intake of mineral supplements. Mg is more likely to be consumed as a multi-nutrient supplement in combination with other minerals than as a single supplement. Moreover, Zn-Cu interactions in the body need to be considered when determining the reference intake values of Zn and Cu. It is recommended to discuss these issues present in the 2020 KDRI development for Mg, Zn, and Cu intakes in a systematic way, and to find relevant solutions.

The emissivity and opto-electrical properties of ZnO/Cu/ZnO thin films for the vehicle applications (ZnO/Cu/ZnO 박막의 차량용 저방사 및 전기광학적 특성 연구)

  • Yeon-Hak Lee;Sun-Kyung Kim;Tae-Yong Eom;Yong-Ha Jeong;Sang-Woo So;Young-Gil Son;Dong-Il Son;Daeil Kim
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.451-456
    • /
    • 2023
  • Transparent conducting films having a three layered structure of ZnO/Cu/ZnO (ZCZ) were deposited onto the glass substrates by using RF and DC magnetron sputtering at room temperature. The emissivity and opto-electrical properties of the films were investigated with a varying thickness(5, 10, 15 nm) of the Cu interlayer. With increasing the Cu thickness to 15 nm, the films showed a enhanced electrical properties. Although ZnO 30/Cu 15/ZnO 30 nm film shows a lower resistivity of 5.2×10-5 Ωcm, it's visible transmittance is deteriorated by increased optical absorbtion of the films. In addition, X-ray diffraction patterns indicated that the insertion of Cu interlayer improve the grain size of ZnO films, which is favor for the electrical and optical properties of transparent conducting films. From the observed low emissivity of the films, it is concluded that the ZCZ thin films with optimal thickness of Cu interlayer can be applied effectively for the car's window coating materials.

코어-쉘 나노입자를 이용한 메모리 소자에서 쉘의 유무에 따른 전도도 특성 및 전하수송 메커니즘

  • Yun, Dong-Yeol;Ryu, Jun-Jang;Kim, Tae-Hwan;Kim, Sang-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.300.1-300.1
    • /
    • 2014
  • 유기물 박막에 나노입자가 분포되어 있는 나노복합체를 이용한 전자 소자는 낮은 소비 전력, 낮은 공정 가격, 그리고 높은 기계적 휘어짐이 가능하기에 차세대 전자 소자로 많은 연구가 진행되고 있다. 친환경 소자를 지향하는 현대 기술에서 환경 친화적 코어-쉘 구조의 나노입자를 이용한 나노복합체는 차세대 전자 소자 중 비휘발성 메모리 소자 연구에서 뛰어난 소자 성능을 보여주고 있어 큰 관심을 받고 있으나 코어-쉘 나노입자를 이용한 비휘발성 메모리 소자의 쉘의 유무에 따른 전도도 특성 및 전하수송 메커니즘 연구는 아직 미미한 실정이다. 본 연구에서는, indium-tin-oxide가 코팅된 polyethylene terephthalate 기판 위에 CuInS2 (CIS)-ZnS 친환경 코어-쉘 나노입자가 poly (methylmethacrylate) (PMMA) 안에 분산된 박막을 이용한 비휘발성 메모리 소자를 제작하여 ZnS 쉘이 전기적 전도도에 미치는 영향을 관찰 하였다. CIS-ZnS 코어-쉘 나노입자에서 ZnS 쉘이 없어도 메모리 소자의 전류-전압 특성에서는 높은 전도도 (ON)와 낮은 전도도 (OFF) 상태가 존재하는 전류 쌍안정성 동작을 보이지만, ZnS 쉘의 유무에 따라 ON/OFF 비율 차이를 보여 전도도 특성이 다름을 관측 하였다. 반복된 전계적 스트레스에 의한 전도도 상태 유지 능력 측정을 수행하여 ZnS 쉘의 유무에 따른 소자의 전도도 안정성 능력을 관측하였다. 측정된 전기적 특성을 기반으로 PMMA 박막 안에 분산된 CIS-ZnS 코어-쉘 나노입자를 이용한 비휘발성 메모리 소자에서 ZnS 쉘의 따른 전도도 특성 및 전하수송 메커니즘 특성을 설명하였다.

  • PDF

Potential Antioxidant Trace Mineral (Zn, Mn, Cu and Fe) Concentrations Measured by Biochemical Indices in South Koreans

  • Cho, Young-Eun;Byun, Young-Mee;Kwak, Eun-Hee;Yoon, Jin-Sook;Oh, Hyun-Mee;Kim, Jae-Wang;Shin, Hyun-Soo;Kwon, Chong-Suk;Kwun, In-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.4
    • /
    • pp.374-382
    • /
    • 2004
  • The concern of the antioxidant micronutrient status in normal healthy people, including antioxidant trace minerals such as Cu, Zn, Mn, Fe and Se is focused since systemic oxidation is involved in various chronic diseases. In the present study, we evaluated the concentration of trace minerals (Cu, Zn, Mn, and Fe) which are considered as potential antioxidant minerals in plasma, red blood cells (RBCs) and urine in normal healthy Korean subjects. The 760 subjects (male 341, female 419; mean age 54.2 $\pm$ 18.9) were recruited from the rural, urban and metropolitan city in South Korea. Dietary intake was evaluated using 24-hours recall for general major nutrient intake assessment. The trace elements (Cu, Zn, Mn, and Fe) concentrations in plasma, RBCs, and urine were measured by inductively coupled plasma spectrophotometer (ICP) and atomic absorption spectrophotometer (AAS). Cu and Zn levels in plasma, RBCs and urine in normal healthy South Koreans were within the normal range of those mineral levels, but Mn and Fe levels were higher compared to the normal range of those mineral levels. None of the selected trace mineral levels in plasma and RBC's was lower than the normal range value. The results showed that Zn and Cu levels in plasma and RBC's in Korean were within the normal range, and plasma and urinary Mn and Fe levels were higher than the normal reference values. Potential antioxidant trace mineral (Cu, Mn, Zn and Fe) levels in Koreans are within or a bit higher than the normal range.