• 제목/요약/키워드: CuInS$_2$

검색결과 2,269건 처리시간 0.037초

S를 고용한 CuInSe$_2$ 박막의 광학 특성 (Optical proper of S solute CuInSe$_2$ thin film)

  • 김규호;이재춘;김민호;배인호
    • 한국표면공학회지
    • /
    • 제30권2호
    • /
    • pp.136-143
    • /
    • 1997
  • The photvoltaic power system has received considerable attention as the petroleumalterative energies to the environmental problems in the wored scale. $CuLnSe_2$is one ofthe most promising materials for the fabrication of large-area modules and low cost photovoltaic devices. Sulfur solute CuInSe2 thin films were prepared by RF sputtering using powder targer which were previously compacted by powder of $Cu_2Se, \;In_2Se_3, \;Cu_2S, \;and\;In_2S_3$ in various ratios. The results induicated that the sulfur ratio, the(112) texture, and the energy band gap were increased by the increase of the S/(S+Se) that was controlled by stoichiometric compound. The energy band gap can be shifted from 1.04eV to 1.50eV by abjusting the S/(S+Se) ratio, which maich it possible to obtain perfect match to the solar spectrum.

  • PDF

Sulfurization 온도와 Cu/(In+Ga) 비가 Cu(In,Ga)Se2 박막 내 S 함량에 미치는 영향 (Effects of sulfurization temperature and Cu/(In+Ga) ratio on Sulfur content in Cu(In,Ga)Se2 thin films)

  • 고영민;김지혜;신영민;;안병태
    • Current Photovoltaic Research
    • /
    • 제3권1호
    • /
    • pp.27-31
    • /
    • 2015
  • It is known that sulfide at the $Cu(In,Ga)Se_2$ ($CIGSe_2$) surface plays a positive role in $CIGSe_2$ solar cells. We investigated the substitution of S with Se on the $CIGSe_2$ surface in S atmosphere. We observed that the sulfur content in the $CIGSe_2$ films changed according to sulfurization temperature and Cu/(In+Ga) ratio. The sulfur content in the $CIGSe_2$ films increased with increasing the annealing temperature and Cu/(In+Ga) ratio. Also Cu migration toward the surface increased at higher temperature. Since high Cu concentration at the $CIGSe_2$ surface is detrimental role, it is necessary to reduce the S annealing temperature as low as $200^{\circ}C$. The cell performance was improved at $200^{\circ}C$ sulfurization.

고체윤활제 $Cu_2S$첨가 소결청동의 미끄럼 마찰마모특성 연구 (A Study of Sliding Friction and Wear Properties for Bronze added $Cu_2S$ as Solid Lubricants)

  • 이한영;지영명
    • Tribology and Lubricants
    • /
    • 제23권2호
    • /
    • pp.66-72
    • /
    • 2007
  • [ $MoS_2$ ], is a well-known metal sulfide applied as solid lubricants and an additive to prolong the life of sintered bearings under severe conditions. However, the high price of $MoS_2$ limited its wide application. This study is aimed to investigate the possibility far application to solid lubricants for $Cu_2S$ as a substitute of $MoS_2$. Bronzes added $Cu_2S$ and $MoS_2$, are produced by powder metallurgy in this study, and then evaluated their friction and wear properties., as well as sintered bronze. The sliding wear test using pin-on-disc type machine, was conducted at several sliding speeds for three type test pieces sintered bronzes added $Cu_2S$ and $MoS_2$, and sintered bronze without lubricants. Addition of $Cu_2S$ to bronze leads to relatively good friction properties, although it is not so good as addition of $MoS_2$. However, the wear properies of sintered bronze added $Cu_2S$ are better than that of sintered bronze added $MoS_2$.

Template Synthesis and Characterization of Host (Nanocavity of Zeolite Y)-Guest ([Cu([18]aneN4S2)]2+, [Cu([20]aneN4S2)]2+, [Cu(Bzo2[18]aneN4S2)]2+, [Cu(Bzo2[20]aneN4S2)]2+) Nanocomposite Materials

  • Salavati-Niasari, Masoud;Mirsattari, Seyed Nezamodin;Saberyan, Kamal
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권2호
    • /
    • pp.348-354
    • /
    • 2009
  • Copper(II) complexes with tetraoxo dithia tetraaza macrocyclic ligands; [18]ane$N_4S_2$: 1,4,10,13-tetraaza-5,9,14,18-tetraoxo-7,16-dithia-cyclooctadecane, [20]ane$N_4S_2$: 1,5,11,15-tetraaza-6,10,16,20-tetraoxo-8,18-dithia-cyclocosane,Bzo2[18]ane$N_4S_2$: dibenzo-1,4,10,13-tetraaza-5,9,14,18-tetraoxo-7,16-dithia-cyclooctadecane, Bzo2[20]ane$N_4S_2$: dibenzo-1,5,11,15-tetraaza-6,10,16,20-tetraoxo-8,18-dithia-cyclocosane; were entrapped in the nanopores of zeolite-Y by a two-step process in the liquid phase: (i) adsorption of [bis(diamine)copper(II)] (diamine = 1,2-diaminoethane, 1,3-diaminopropane, 1,2-diaminobenzene, 1,3-diaminobenzene); $[Cu(N-N)_2]^{2+}$-NaY; in the nanopores of the zeolite, and (ii) in situ template condensation of the copper(II) precursor complex with thiodiglycolic acid. The obtained complexes and new host-guest nanocomposite materials; $[Cu([18]aneN_4S_2)]^{2+}-NaY,\;[Cu([20]aneN_4S_2)]^{2+}-NaY,\;[Cu(Bzo_2[18]aneN_4S_2)]^{2+}-NaY,\;[Cu(Bzo_2[20]aneN_4S_2)]^{2+}$-NaY; have been characterized by elemental analysis FT-IR, DRS and UV-Vis spectroscopic techniques, molar conductance and magnetic moment data, XRD and, as well as nitrogen adsorption. Analysis of data indicates all of the complexes have been encapsulated within nanopore of zeolite Y without affecting the zeolite framework structure.

$CuGaS_2$ 3원 화합물 박막의 제작과 분석에 관한 연구 (A Study on th properties and Fabrication of $CuGaS_2$ Ternary Compound thin film)

  • 양현훈;정운조;박계춘
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.279-280
    • /
    • 2008
  • For the manufacture of the $CuGaS_2$, Cu, Ga and S were vapor-deposited in the named order. Among them, Cu and Ga were vapor-deposited by using the Evaporation method in consideration of their adhesive force to the substrate so that the composition of Cu and Ga might be 1 : 1, while the surface temperature having an effect on the quality of the thin film was changed from R.T.[$^{\circ}C$] to 150$[^{\circ}C]$ at intervals of 50$[^{\circ}C]$. As a result, at 400$[^{\circ}C]$ of the Annealing temperature, their chemical composition was measured in the proportion of 1 : 1 : 2. It could be known from this experimental result that it is the optimum condition to conduct Annealing on the $CuGaS_2$ thin film under a vacuum when the $CuGaS_2$ thin film as an optical absorption layer material for a solar cell is manufactured.

  • PDF

Sol-gel법에 의한 박막태양전지용 CuInS2 박막의 증착과 특성 (Characteristics and Deposition of CuInS2 film for thin solar cells via sol-gel method0)

  • 이상현;이승엽;박병옥
    • 한국결정성장학회지
    • /
    • 제21권4호
    • /
    • pp.158-163
    • /
    • 2011
  • 박막 태양전지의 저가 고효율화를 실현하기 위해 넓은 면적의 기판 위에 코팅이 가능하며 진공의 유자가 필요 없기 때문에 장치가 간단하고 고순도의 균질한 박막을 얻을 수 있고 박막의 조성을 쉽게 조절할 수 있는 Sol-Gel법을 이용 하였다. Se보다 저가이며 독성이 없고 풍부한 원료인 S로 치환하여 사용하며 Cu/In비 값을 조절하고 tetragonal chalcopyrite $CuInS_2$의 열처리 온도에 따른 박막의 구조적, 광학적 특성에 미치는 변수들의 영향을 알아보았다. XRD pattern을 관찰한 결과 Cu/In비가 1.0일 때 $2{\theta}=27.9^{\circ}$에서 주피크가 가장 강하게 나타났으며 (112) 방향의 배향성을 가진 chalcopyrite상임을 확언 할 수 있었다. 열처리 온도가 증가할수록 (112) 면의 강도가 커지며 $500^{\circ}C$에서 열처리를 한 $CuInS_2$ 박막은 tetragonal 구조의 화학량론적 $CuInS_2$ 특징을 나타내고 본 실험의 샘플의 격자상수를 측정한 값이 a = 5.5032, c = 11.1064 ${\AA}$이며 JCPDS(Joint Committee on Powder Diffraction Standards)에 보고된 데이터 a = 5.523, c = 11.14 ${\AA}$과 거의 일치하였다. 광학적 특성을 알아보기 위해 측정한 광투과율은 가시광선 영역(380~770 nm)에서 전체적으로 30% 이하로 나타났다.

The Effect of Sulfurization Temperature on CuIn(Se,S)2 Solar Cells Synthesized by Electrodeposition

  • 김동욱;윤상화;유봉영
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2014년도 추계학술대회 논문집
    • /
    • pp.97-97
    • /
    • 2014
  • The properties of thin film solar cells based on electrodeposited $CuIn(Se,S)_2$ were investigated. The proposed solar cell fabrication method involves a single-step $CuInSe_2$ thin film electrodeposition followed by sulfurization in a tube furnace to form a $CuIn(Se,S)_2$ quaternary phase. A sulfurization temperature of $450-550^{\circ}C$ significantly affected the performance of the $CuIn(Se,S)_2$ thin film solar cell in addition to its composition, grain size and bandgap. Sulfur(S) substituted for selenium(Se) at increasing rates with higher sulfurization temperature, which resulted in an increase in overall band gap of the $CuIn(Se,S)_2$ thin film. The highest conversion efficiency of 3.12% under airmass(AM) 1.5 illumination was obtained from the $500^{\circ}C$-sulfurized solar cell. The highest External Quantum Efficiency(EQE) was also observed at the sulfurization temperature of $500^{\circ}C$.

  • PDF

용액 공정으로 만든 Cu(In,Ga)S2 박막태양전지의 전기적 특성 (Electrical Characteristics of Solution-processed Cu(In,Ga)S2 Thin Film Solar Cells)

  • 김지은;민병권;김동욱
    • Current Photovoltaic Research
    • /
    • 제2권2호
    • /
    • pp.69-72
    • /
    • 2014
  • We investigated current-voltage (I-V) and capacitance (C)-V characteristics of solution-processed thin film solar cells, consisting of $Cu(In,Ga)S_2$ and $CuInS_2$ stacked absorber layers. The ideality factors, extracted from the temperature-dependent I-V curves, showed that the tunneling-mediated interface recombination was dominant in the cells. Rapid increase of both series- and shunt-resistance at low temperatures would limit the performance of the cells, requiring further optimization. The C-V data revealed that the carrier concentration of the $CuInS_2$ layer was about 10 times larger than that of the $Cu(In,Ga)S_2$ layer. All these results could help us to find strategies to improve the efficiency of the solution-processed thin film solar cells.

The synthesis and properties of point defect structure of Cu2-XZnSnS4 (x=0.1, 0.2, and 0.3)

  • Bui D. Long;Le T. Bang
    • Advances in materials Research
    • /
    • 제13권1호
    • /
    • pp.55-62
    • /
    • 2024
  • Cu-based sulfides have recently emerged as promising thermoelectric (TE) materials due to their low cost, non-toxicity, and abundance. In this research, point defect structure of Cu2-xZnSnS4 (x=0.1, 0.2, 0.3) samples were synthesized by the mechanical alloying method. Mixed powders of Cu, Zn, Sn and S were milled using high energy ball milling at a rotation speed of 300 rpm in Ar atmosphere. The milled Cu2-xZnSnS4 powders were heat-treated at 723 K for 24 h, and subsequently consolidated using spark plasma sintering (SPS) under an applied pressure of 60 MPa for 15 min. The thermal conductivity of the sintered Cu2-xZnSnS4 samples was evaluated. A well-defined Cu2-xZnSnS4 powders were successfully formed after milling for 16 h, with the particle sizes mostly distributed in the range of 60-100 nm. The lattice constants of aand cdecreased with increasing composition value x. The thermal conductivity of sintered x=0.1 sample exhibited the lowest value and attained 0.93 W/m K at 673 K.

Cu-Zr이원계 합금에서 화학조성 및 열싸이클링에 따른 마르텐사이트변태 특성의 열분석학적 연구 (A Calorimetric Study on the Martensitic Transformation Characteristics with Chemical Composition and Thermal Cycling in Cu-Zr Binary Alloys)

  • 장우양;;조민성;이재현;이영수;강조원;곽사호
    • 열처리공학회지
    • /
    • 제11권2호
    • /
    • pp.111-120
    • /
    • 1998
  • The effects of chemical composition and thermal cycling on the martensitic transformation characteristics in Cu-rich, equiatomic and Zr-rich CuZr binary alloys have been studied by calorimetry. Only martensite could be indentified in equiatomic $Cu_{49.9}Zr_{50.1}$ alloy, while $Cu_{10}Zr_7$ and $CuZr_2$ intermetallic compounds as well as martensite were formed by rapid cooling from the melts in Cu-rich $Cu_{52.2}Zr_{47.5}$ alloy and Zr-rich $Cu_{48.4}Zr_{51.6}$ alloy, respectively. The $M_s$ temperature of $Cu_{49.9}Zr_{50.1}$ was $156^{\circ}C$ but those of $Cu_{52.5}Zr_{47.5}$ and $Cu_{48.4}Zr_{51.6}$ alloys, being $109^{\circ}C$ and $138^{\circ}C$, were lower than that of equiatomic $Cu_{49.9}Zr_{50.1}$ alloy. In all the alloys, the $M_s$ temperature has fallen but the $A_s$ temperature has risen, resulting in widening of the transformation hysteresis with thermal cycling. The anomalous characteristics in the transformation temperature are due to the presence of the intermetallic compounds i.e. $Cu_{10}Zr_7$ and $CuZr_2$ formed by an eutectoid reaction during thermal cycling in the temperature range between $-100^{\circ}C$ < $T_c$ < $400^{\circ}C$.

  • PDF