• Title/Summary/Keyword: Cu-bearing

Search Result 142, Processing Time 0.025 seconds

Stable Isotopes of Ore Bodies in the Pacitan Mineralized District, Indonesia (인도네시아 파찌딴 광화대 함 금속 광체의 안정동위원소 특성)

  • Han, Jin-Kyun;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.48 no.1
    • /
    • pp.15-24
    • /
    • 2015
  • Extensive base-metal and/or gold bearing ore mineralizations occur in the Pacitan mineralized district of the south western portions in the East Java, Indonesia. Metallic ore bodies in the Pacitan mineralized district are classified into two major types: 1) skarn type replacement ore bodies, 2) fissure filling hydrothermal ore bodies. Skarn type replacement ore bodies are developed typically along bedding planes of limestone as wall rock around the quartz porphyry and are composed mineralogically of skarn minerals, magnetite, and base metal sulfides. Hydrothermal ore bodies differ mineralogically in relation to distance from the quartz porphyry as source igneous rock. Hydrothermal ore bodies in the district are porphyry style Cu-Zn-bearing stockworks as proximal ore mineralization and Pb-Zn(-Au)-bearing fissure filling hydrothermal veins as distal ore mineralization. Sulfur isotope compositions in the sulfides from skarn and hydrothermal ore bodies range from 6.7 to 8.2‰ and from 0.1 to 7.9‰, respectively. The calculated ${\delta}^{34}S$ values of $H_2S$ in skarn-forming and hydrothermal fluids are 0.9 to 7.1‰ (5.6-7.1‰ for skarn-hosted sulfides and 0.9-6.8‰ for sulfides from hydrothermal deposits). The change from skarn to hydrothermal mineralization would have resulted in increased $SO_4/H_2S$ ratios and corresponding decreases in ${\delta}^{34}S$ values of $H_2S$. The calculated ${\delta}^{18}O$ water values are: skarn magnetite, 9.6 and 9.7‰; skarn quartz, 6.3-9.6‰; skarn calcite, 4.7 and 5.8‰; stockwork quartz, 3.0-7.7‰; stockwork calcite, 1.2 and 2.0‰; vein quartz, -3.9 - 6.7‰. The calculated ${\delta}^{18}O_{water}$ values decrease progressively with variety of deposit types (from skarn through stockwork to vein), increasing paragenetic time and decreasing temperature. This indicates the progressively increasing involvement of isotopically less-evolved meteoric waters in the Pacitan hydrothermal system. The ranges of ${\delta}D_{water}$ values are from -65 to -88‰: skarn, -67 to -84‰; stockwork, -65 and -76‰; vein, -66 to -88‰. The isotopic compositions of fluids in the Pacitan hydrothermal system show a progressive shift from magmatic hydrothermal dominance in the skarn and early hydrothermal ore mineralization periods toward meteoric hydrothermal dominance in the late ore mineralization periods.

Geochemistry and Genesis of Hydrothermal Cu Deposits in the Gyeongsang Basin, Korea : Hwacheon-ri Mineralized Area (경상분지내 열수동광상의 지화학 및 성인연구 : 화천리지역 광화대)

  • So, Chil-Sup;Choi, Sang-Hoon;Yun, Seong-Taek
    • Economic and Environmental Geology
    • /
    • v.28 no.4
    • /
    • pp.337-350
    • /
    • 1995
  • The Hwacheon-ri mineralized area is located within the Cretaceous Gyeongsang Basin of the Korean peninsula. The mineralized area includes the Hwacheon, Daeweon, Kuryong and Cheongryong mines. Each of these mines occurs along copper-bearing hydrothermal quartz veins that crosscut late Cretaceous volcanic rocks, although some disseminated ores in host rocks also exist locally. Mineralization can be separated into three distinct stages (I, II, and III) which developed along preexisting fracture zones. Stage I is ore-bearing, whereas stages II and III are barren. The main phase of ore mineralization, stage I, can be classified into three substages (Ia, Ib and Ic) based on ore mineral assemblages and textures. Substage Ia is characterized by pyrite-arsenopyrite-molybdenite-pyrrhotite assemblage and is most common at the Hwacheon deposit. Substage Ib is represented by main precipitation of Cu, Zn, and Pb minerals. Substage Ic is characteristic of hematite occurrence and is shown only at the Kuryong and Cheongryong deposits. Some differences in the ore mineralization at each mine in the area suggest that the evolution of hydrothermal fluids in the area varied in space (both vertically and horizontally) with respect to igneous rocks relating the ore mineralization. Fluid inclusion data show that stage I ore mineralization mainly occurred at temperatures between ${\approx}350^{\circ}$ and ${\approx}200^{\circ}C$ from fluids with salinities between 9.2 and 0.5 wt.% eq. NaCl. In the waning period of substage Ia, the high temperature and salinity fluid gave way to progressively cooler, more dilute fluids of later substage Ib and Ic (down to $200^{\circ}C$, 0 wt.% NaCl). There is a systematic decrease in the calculated ${\delta}^{18}O_{H2O}$ values with paragenetic time in the Hwacheon-ri hydrothermal system from values of ${\approx}2.7$‰ for substage Ia, through ${\approx}-2.8$‰ for substage Ib, to ${\approx}-9.9$‰ for substage Ic. The ${\delta}D$ values of fluid inclusion water also decrease with decreasing temperature (except for the Daeweon deposit) from -62‰ (substage Ia) to -80‰ (substage Ic and stage III). These trends are interpreted to indicate the progressive cooler, more oxidizing unexchanged meteoric water inundation of an initial hydrothermal system which is composed of highly exchanged meteoric water. Equilibrium thermodynamic interpretation of the mineral assemblages with the variation in amounts of chalcopyrite through the paragenetic time, and the evolution of the Hwacheon-ri hydrothermal fluids indicate that the solubility of copper chloride complexes in the hydrothermal system was mainly controlled by the variation of temperature and $fo_2$ conditions.

  • PDF

Geology and Soils of Chojeong-Miwon Area (초정-미원지역의 지질과 토양에 관한 연구)

  • 나기창
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.13-28
    • /
    • 2000
  • Chojeong area is mainly composed of the Ogcheon Group which consists of regionally metamorphosed, age-unknown sedimentary rocks. In the northwestern parts, the Group is intruded by the Jurassic Daebo granite and Cretaceous felsic and mafic dykes. The lowermost, Midongsan Formation which consists of milky white impure quartzite, crops out along the anticline axes with N40E trend. Ungyori quartzite Formation is intercalated with quartzite and slate. Miwon Formation is most widely exposed in the area and consists mainly of phyllitic sandy rocks with a thin crystalline limestone bed. Hwajeonri Formation is divided into two parts, pelitic lower and calcareous upper parts, composed with phyllite and slate. Changri and Hwanggangri Formations are typical members of Ogcheon Group, the former bearing coally graphite seams consists mainly of black slate and phyllite with intercalated greenish grey phyllite, the latter is pebble bearing phyllite formation of which matrix and pebbles are variable in compositions and size. Biotite granite, porphyritic granite and two mica granite belong to Jurassic so-called Dabo granite. They intruded the Ogcheon Group forming vast contact metarnophic zone. Quartz porphyry, mafic dyke and felsite intruded along the marginal zone of porphyritic granite batholith and fracture of NS trend. Main structural lineaments in Ogcheon Group shows N25-45E, NS and N30-45W trends. The N25-45E trends are mainly from general ductile deformation during regional metamorphism, showing isoclinal folding, Fl foliations and lithological erosional characters. Some of these trends are due to normal faults. The NS and N30-45W trends represent brittle deformation including faults and joints. In the area of granitic batholith, NS to N30- 45 trends are from the direction of dykes. In the soils of the area, average contents of heavy metal elements such as Cd, Cr, Cu, Pb, and Zn are 0.2, 50.6, 35.5, 27.9, and 93.4 ppm respectively, which are not higher than the average values of natural soils, under the tolerable level. Enrichment Index does not show any heavy metal pollution in the area. Average depths of weathering(5m vs. 2m), porosities(43.94 vs. 51.80), densities(l.29 vs. 1.15), and permeabilities(2.52 vs. 8.07) are comparable in granite areas and in the phyllite areas of Ogcheon Group.

  • PDF

The Soil and Water Pollution caused by the Weathering of Pyrophyllite Deposits: Upstream Part of Hoidong Water Reservoir in Pusan (납석광산에서 발생하는 토양 및 수질오염 실태 : 부산광역시 회동수원지 상류 지역)

  • 박맹언;김근수
    • Journal of Environmental Science International
    • /
    • v.7 no.2
    • /
    • pp.149-156
    • /
    • 1998
  • Enoronmental problems caused by certain geologic conditions Include pollution of soil by heavy metal, acidization of souls , acid mine drainage, Pound-water pollution, and natural radioactivity, as well as zoo-logical hazards such as landslide and subsidence. The acrid mine drainage contains large amount of heavy metals nO, therefore. cause serious pollution onto the nearby drainage systems and soils. In spite of this prospective environmental danger, few studies have been done on the acid mine drainage derived from non-metallic ore deposits such as pyrophyllitefNapseok) deposits. The sudo-bearing pyrophyllite ores, alteration zones, and mine talllngs of pyrophylllte deposits produce acrid mine drainage by the okidation of weathering. Compared to the fresh host rocks, the ores and altered rocks of pyrophyllite deposits produce acidic solution which contain higher amount of heavy metals because of OeP lower buffering capacity to acrid solution. The pus of urine water and nearby stream water of pyrophyllite deposits are 2.1~3.7, which are strong- ly acidic and much lower than that (6.2~7.2) of upstream water and than that (6.8~7.6) of the stream water derived from the non-mineralized area. This study reveals that this acrid mine drainage can affect the downstream area which is 8km far from the pyrophyllite deposits, even though the drain Is diluted with abundant non-contaminated river water This suggmists that not only acid mine drainage but also the sulfide-bearing sediments originated from the pyrophyllite deposits move downstream and form acidic water through continuous oxidation reaction. The heavy metals such as Pb, Zn, Cu, Cd, Nl, Mn and Fe are enriched In the mine water of low pH, and their contents decrease as the pH of mine water Increases because of the Influx of fresh stream wainer. SoUs of the Pyrophyulte deposits are characterized by high contents of heavy metals. The stream sediments containing the yellowish brown precipitates formed by neutralization of acid mine drainage occur in all parts of the stream derived from the pyrophyllite deposits, and the sediments also contain high amounts of heavy metals. In summary, the acid mine drainage of the pyrophyllite deposits is located in the upstream part of Hoidong water reservoir in Pusan contains large amounts of heavy metals and flows into the Holdong water reservoir without any purification process. To protect the water of Holdong reservoir, the acid mine drainage should be treated with a proper purification process.

  • PDF

Geochemical Environments of Copper-bearing Ore Mineralization in the Haman Mineralized Area (함안지역 함 동 광화작용의 지화학적 환경)

  • Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • The Haman mineralized area is located within the Cretaceous Gyeongsang Basin along the southeastern part of the Korean peninsula. Almost all occurrences in the Haman area are representative of copper-bearing polymetallic hydrothermal vein-type mineralization. Within the area are a number of fissure-filling hydrothermal veins which contain tourmaline, quartz and carbonates with Fe-oxide, base-metal sulfide and sulfosalt minerals. The Gunbuk, Jeilgunbuk and Haman mines are each located on such veins. The ore and gangue mineral paragenesis can be divided into three distinct stages: Stage I, tourmaline + quartz + Fe-Cu ore mineralization; Stage II, quartz + sulfides + sulfosalts + carbonates; Stage III, barren calcite. Equilibrium thermodynamic data combined with mineral paragenesis indicate that copper minerals precipitated mainly within a temperature range of $350^{\circ}C$ to $250^{\circ}C$. During early mineralization at $350^{\circ}C$, significant amounts of copper ($10^3$ to $10^2\;ppm$) could be dissolved in weakly acid NaCl solutions. For late mineralization at $250^{\circ}C$, about $10^0$ to $10^{-1}\;ppm$ copper could be dissolved. Equilibrium thermodynamic interpretation indicates that the copper in the Haman-Gunbuk systems could have been transported as a chloride complex and the copper precipitation occurred as a result of cooling accompanied by changes in the geochemical environments ($fs_2$, $fo_2$, pH, etc.) resulting in decrease of solubility of copper chloride complexes.

Genetic Environments of Dongwon Au-Ag-bearing Hydrothermal Vein Deposit (동원 함 금-은 열수 맥상광상의 생성환경)

  • Lee, Sunjin;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.753-765
    • /
    • 2021
  • The Dongwon Au-Ag deposit is located within the Paleozoic Taebaeksan province, Okcheon belt. Mineral paragenesis can be divided into two stages (stage I, ore-bearing quartz veins; stage II, barren carbonate veins) by major tectonic fracturing. Stage I, at which the precipitation of major ore minerals occurred, is further divided into three substages(early, middle and late) with paragenetic time based on minor fractures and discernible mineral assemblages: early, marked by deposition of pyrite with minor magnetite, pyrrhotite and arsenopyrite; middle, characterized by introduction of electrum and base-metal sulfides with minor sulfosalts; late, marked by argentite, Cu-As (and/or Sb) and Ag-Sb sulfosalts with base-metal sulfides. Fluid inclusion data show that stage I ore mineralization was deposited between initial high temperatures (≥430℃) and later lower temperatures (≤230℃) from fluids with salinities between 6.0 to 0.4 wt. percent equiv. NaCl. The relationship of salinity and homogenization temperature suggest that ore mineralization at Dongwon was deposited mainly due to fluid boiling, cooling and dilution via influx of cooler, more dilute meteoric waters. Changes in stage I vein mineralogy reflect decreasing temperature and fugacity of sulfur by evolution of the Dongwon hydrothermal system with increasing paragenetic time. The Dongwon deposit may represents a Korean-type and/or Au-Ag type mesothermal/epithermal gold-silver deposit.

Fluid Inclusion Study of Quartz Veins in Zogdor Copper Mineralized Area, Southern Mongolia (몽골 남부 족도르 동 광화 지역 석영맥의 유체포유물 연구)

  • Davaasuren, Otgon-Erdene;Lee, Bum Han;Kim, Namhoon;Koh, Sang-Mo;Yoo, Bong Chul;Seo, Jung Hun
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.2
    • /
    • pp.147-156
    • /
    • 2021
  • We report fluid inclusion study results of copper-bearing quartz veins in Zogdor area, which is located within the Gurvansayhan island arc terrane of Southern Mongolia. At the Zogdor area, structurecontrolled copper mineralization is hosted in granodiorite-porphyry, which emplaced in the late Cretaceous formation. Within this granodiorite porphyry, copper-bearing quartz veins are associated with the hydrothermal alteration that includes quartz-epidote-magnetite, and quartz-magnetite in the propylitic zones. The veins are classified into two types, according to their mineral composition, which occur mainly as chalcopyrite, rare amounts of bornite, magnetite, and pyrite. Fluid inclusions in the quartz veins from the quartz-magnetite±chalcopyrite and quartz-epidote-magnetite veins are two-phase aqueous inclusions having bubble sizes of 5-30 vol.%, evident salinities of 2.0-22.6 wt.% NaCl, and homogenization temperatures of 107-270℃. Based on mineral assemblages of the observed veins, along with the geochemical properties and alteration faces of the host rock, fluid inclusion data show that the study area corresponds to propylitic alteration zone in the porphyry Cu related mineralization.

Element Dispersion by the Wallrock Alteration of Daehyun Gold-silver Deposit (대현 금-은광상의 모암변질에 따른 원소분산)

  • Yoo, Bong Chul
    • Economic and Environmental Geology
    • /
    • v.46 no.2
    • /
    • pp.199-206
    • /
    • 2013
  • The Daehyun gold-silver deposit consists of two hydrothermal quartz veins that fill NE-trending fractures in the Cambro-Ordovician calcitic marble. I have sampled wallrock, hydrothermaly-altered rock and gold-silver ore vein to study the element dispersion and element gain/loss during wallrock alteration. The hydrothermal alteration doesn't remarkably recognized at this deposit and consists of mainly calcite, dolomite, quartz and minor epidote. The ore minerals composed of arsenopyrite, pyrrhotite, pyrite, sphalerite, stannite, chalcopyrite, galena, electrum, native bismuth and silver-bearing mineral. Based on analyzed data, the chemical composition of wallrock consists of mainly $SiO_2$, CaO, $CO_2$ with amounts of $Al_2O_3$, $Fe_2O_3(T)$ and MgO. The contents of $SiO_2$, $Fe_2O_3(T)$, MgO, CaO and $CO_2$ vary significantly with distance from ore vein. The element dispersion doesn't remarkably recognized during wallrock alteration and only occurs near the ore vein margin because of physical and chemical properties of wallrock. Remarkable gain elements during wallrock alteration are $Fe_2O_3(T)$, total S, Ag, As, Bi, Cd, Cu, Ni, Pb, Sb, Sn, W and Zn. Remarkable loss elements are $SiO_2$, MnO, MgO, CaO. $CO_2$ and Sr. Therefore, Our result may be used when geochemical exploration carry out at deposits hosted calcitic marble in the Hwanggangri metallogenic district.

A Study on the Behavior of Deformation in Soft Soils Subjected to Lateral Flow (측방유동을 받는 연약지반의 변형거동에 관한 연구)

  • 안종필;홍원표
    • Geotechnical Engineering
    • /
    • v.10 no.2
    • /
    • pp.25-40
    • /
    • 1994
  • In order to investigate behavior of lateral flow by plasticity of soils and construction control due to it, in the case of unsymmetrical surcharge load on the soft soils, we examine the existing theoretical background, and compared and analysed the experimental results by model test. After model test fabricated by model test apparatus, which made full remolding samples of soft soils, we observed the state of behavior for deformation with increasing load step to constant time interval. The critical surcharge and ultimate capacity showed tendency to approach to the proposed value of Jaky and Meyerhof, and the lateral flow pressure of which the maximum value was acted on the depth calculated by z/H=0.26+1.71cu and one third value of the maximum lateral flow pressure acted on the ground surface, approach the trapezoid distribution And maximum lateral flow pressure will be calculated by proposed equation of Hong or simple equation which($\alpha=0.4$) the flow pressure coefficient . of proposed equation by Tschebotarioff exchanged to($\alpha=K_0$) . Basides, the failure surcharge by [(q/$y_m$)-q] and [$S_y-(y_m/S_y)$] showed the smaller than ultimate bearing capacity, especially failure criteria line of control diagram of [$S_y(y_m/S_y)$] will be calculated by following equation. $S_y.=3.15exp[-0.58(y_m/S_y)$

  • PDF

Mineralogical and Geochemical Characteristics of Soils of Barton Peninsula, King George Island, South Shetland Islands, West Antarctica (서남극 사우스셰틀랜드 킹조지섬 바톤반도 육상 토양의 광물학적, 지화학적 특성)

  • Jung, Jaewoo;Koo, Taehee;Yang, Kiho;Kim, Jinwook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.21-29
    • /
    • 2017
  • Surface soils on Barton Peninsula, King George Island, West Antarctica were investigated to acquire the mineralogical and geochemical data of soil in Antarctica. Multiline of techniques for example, X-ray diffraction (XRD), transmission electron microscopy (TEM)-electron energy loss spectroscopy (EELS), and wet chemistry analysis were performed to measure the composition of clay minerals, Fe-oxidation states, cation exchange capacity, and total cation concentration. Various minerals in sediments such as smectite, illite, chlorite, kaolinite, quartz and plagioclase were identified by XRD. Fe-oxidation states of bulk soils showed 20-40% of Fe(II) which would be ascribed to the reduction of Fe in clays as well as Fe-bearing minerals. Moreover, redox states of Fe in smectite structure was a ~57% of Fe(III) consistent to the values for the bulk soils. The cation exchange capacity of bulk soils ranged from 100 to 300 meq/kg and differences were not significantly measured for the sampling locations. Total cations (Mg, K, Na, Al, Fe) of bulk soils varies, contrast to the heavy metals (Co, Ni, Cu, Zn, Mn). These results suggested that composition of bed rocks influenced the distribution of elements in soil environments and soils containing clay compositions may went through the bio/geochemical alteration.