• Title/Summary/Keyword: Cu-ZnO/$Al_2O_3$

Search Result 161, Processing Time 0.021 seconds

Hydrochemical characteristics of ground and geothermal waters in the Haeundae hot-spring area, Pusan, Korea (부산 해운대지역 지하수와 지열수의 수리화학적 특성)

  • Shim, Hyong-Soo;Yeong, We-Yeong;Sung, Ig-Hwa;Lee, Byeong-Dae;Cho, Byong-Wook;Hwang, Jin-Yeon
    • Journal of Environmental Science International
    • /
    • v.9 no.3
    • /
    • pp.241-252
    • /
    • 2000
  • Twenty-two water samples(fifteen groundwater and seven geothermal water samples) were collected to elucidate chemical characteristics of the ground and geothermal waters in the Haeundae hot spring area and its vicinity. Major and honor elements were analyzed for ground and geothermal water samples. The concentrations of $K^+$, Na+$, $Ca^{2+}$, $SO_4^{2-}$, $Cl^-$, ^F^-$ and $SiO_2$ were higher in the geothermal water samples than the groundwater samples except $HCO_3^- and Mg^{2+}$ ions. Based on the contents of Fe, Zn, Cu, Al, Mn and Pb, some of the ground and geothermal water samples are contaminated by anthropogenic sources. The ground waters shown on the Piper diagram belong to $Ca-HCO_3$ type, while the geothermal waters Na-Cl type. The graphs of $Cl^-$ versus $Na^+$, $Ca^{2+}, Mg^{2+}, K^+, SO_4^{2-} and HCO_3^-$ indicate that the groundwater is related partly with mineral-water reaction and partly with anthropogenic contamination, while the geothermal water is related with saline water. On the phase stability diagram, groundwater and thermal water mostly fall in the field of stability of kaolinite. This indicates that the ground and geothermal waters proceed with forming kaolinite. Factor and correlation analyses were carried out to simplify the physicochemical data into grouping some factors and to find interaction between them. Based on the Na-K, Na-K-Ca and Na-K-Ca-Mg geothermometers and silica geothermometers, the geothermal reservoir is estimated to have equilibrium temperature between 125${$\mid$circ}C$ and 160${$\mid$circ}C$.

  • PDF

Janggunite, a New Mineral from the Janggun Mine, Bonghwa, Korea (경북(慶北) 봉화군(奉化郡) 장군광산산(將軍鑛山産) 신종광물(新種鑛物) 장군석(將軍石)에 대(對)한 광물학적(鑛物學的) 연구(硏究))

  • Kim, Soo Jin
    • Economic and Environmental Geology
    • /
    • v.8 no.3
    • /
    • pp.117-124
    • /
    • 1975
  • Wet chemical analysis (for $MnO_2$, MnO, and $H_2O$(+)) and electron microprobe analysis (for $Fe_2O_3$ and PbO) give $MnO_2$ 74.91, MnO 11.33, $Fe_2O_3$ (total Fe) 4.19, PbO 0.03, $H_2O$ (+) 9.46, sum 99.92%. 'Available oxygen determined by oxalate titration method is allotted to $MnO_2$ from total Mn, and the remaining Mn is calculated as MnO. Traces of Ba, Ca, Mg, K, Cu, Zn, and Al were found. Li and Na were not found. The existence of (OH) is verified from the infrared absorption spectra. The analysis corresponds to the formula $Mn^{4+}{_{4.85}}(Mn^{2+}{_{0.90}}Fe^{3+}{_{0.30}})_{1.20}O_{8.09}(OH)_{5.91}$, on the basis of O=14, 'or ideally $Mn^{4+}{_{5-x}}(Mn^{2+},Fe^{3+})_{1+x}O_{8}(OH)_{6}$ ($x{\approx}0.2$). X-ray single crystal study could not be made because of the distortion of single crystals. But the x-ray powder pattern is satisfactorily indexed by an orthorhombic cell with a 9.324, b 14.05, c $7.956{\AA}$., Z=4. The indexed powder diffraction lines are 9.34(s) (100), 7.09(s) (020), 4.62(m) (200, 121), 4.17(m) (130), 3.547(s) (112), 3.212(vw) (041), 3.101(s) (300), 2.597(w) (013), 2.469(m) (331), 2.214(vw)(420), 2.098(vw) (260), 2.014 (vw) (402), 1.863(w) (500), 1.664(w) (314), 1.554(vw) (600), 1.525(m) (601), 1.405(m) (0.10.0). DTA curve shows the endothermic peaks at $250-370^{\circ}C$ and $955^{\circ}C$. The former is due to the dehydration: and oxidation forming$(Mn,\;Fe)_2O_3$(cubic, a $9.417{\AA}$), and the latter is interpreted as the formation of a hausmannite-type oxide (tetragonal, a 5.76, c $9.51{\AA}$) from $(Mn,\;Fe)_2O_3$. Infrared absorption spectral curve shows Mn-O stretching vibrations at $515cm^{-1}$ and $545cm^{-1}$, O-H bending vibration at $1025cm^{-1}$ and O-H stretching vibration at $3225cm^{-1}$. Opaque. Reflectance 13-15%. Bireflectance distinct in air and strong in oil. Reflection pleochroism changes from whitish to light grey. Between crossed nicols, color changes from yellowish brown with bluish tint to grey in air and yellowish brown to grey through bluish brown in oil. No internal reflections. Etching reactions: HCl(conc.) and $H_2SO_4+H_2O_2$-grey tarnish; $SnCl_2$(sat.)-dark color; $HNO_3$(conc.)-grey color; $H_2O_2$-tarnish with effervescence. It is black in color. Luster dull. Cleavage one direction perfect. Streak brownish black to dark brown. H. (Mohs) 2-3, very fragile. Specific gravity 3.59(obs.), 3.57(calc.). It occurs as radiating groups of flakes, flower-like aggregates, colloform bands, dendritic or arborescent masses composed of fine grains in the cementation zone of the supergene manganese oxide deposits of the Janggun mine, Bonghwa-gun, southeastern Korea. Associated minerals are calcite, nsutite, todorokite, and some undetermined manganese dioxide minerals. The name is for the mine, the first locality. The mineral and name were approved before publication by the Commission on New Minerals and Mineral Names, I.M.A.

  • PDF

A Study on Heavy Metals at the Consumer s Tap in Seoul (서울市 一部 水道栓水中 重金屬에 관한 調査硏究)

  • Lee, Byung Mu
    • Journal of Environmental Health Sciences
    • /
    • v.10 no.2
    • /
    • pp.41-51
    • /
    • 1984
  • This study was performed using samples collected at Myungryundong and at Reservoirs. The purpose of this study was to investigate the differences of water quality between tap and raw water, and to analyse drinking water quality by Fe, Zn from corroded galvanized steel pipe. Results were as follows 1. The older the pipe was, the higher the concentration of Ferrum and Zinc was (t-test : p<0.05). Ferrum and Zinc also exceeded the limits in the older galvanized steel pipe. I think that this comes from the corrosion of pipe. 2. Mercury, Arsenic, Cadmium, Lead, Chomium, Argentum and Aurum not detected in raw water were not detected in tap water. Cobalt, Bismuth and Molybudenum detected in raw water were not detected in tap water. I think that this comes from the quality of raw water, the result of water treatment and the improbability of detection of above metals in water delivery system. 3. Silicon measured 2.4698ppm in raw water, but it ranged from 0.4769ppm to 1.982 ppm in tap water. Manganese measured 0.0638ppm in raw water, but it ranged from 0.0026ppm to 0.0198ppm in 17cases(31%) out of 55samples in tap water. I think that this comes from the water treatment. 4. Aluminium not detected in raw water was found in 17 cases (31%) out of the samples (55cases). It may be considered as the use of coagulants $Al_2(SO_4)_3$. $18H_2O$ and PAC (Poly Aluminium Chloride). The concentration of copper in tap water was much higher in 2 cases(3.6%) out of the samples(55) than that of copper in raw water. I think that this may come from the use of ${CuSO}_4$, the preventive of algae growth, and the result of chlorination, but further study must be necoessary to support the proof.

  • PDF

Geochemical Characteristics of Intertidal Surface Sediments along the Southwestern Coast of Korea (한국 서해남부 조간대 표층 퇴적물의 지화학적 특성)

  • Hwang, Dong-Woon;Ryu, Sang-Ok;Kim, Seong-Gil;Choi, Ok-In;Kim, Seong-Soo;Koh, Byoung-Seol
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.2
    • /
    • pp.146-158
    • /
    • 2010
  • In order to evaluate the characteristics of sediments and pollution by organic matter and metallic elements in intertidal sediments along the southwestern coast of Korea, we measured various geochemical parameters, including the mean grain size (Mz), water content (WC), ignition loss (IL), chemical oxygen demand (COD), acid volatile sulfide (AVS), and metallic elements (Al, Fe, Cu, Pb, Zn, Cd, Cr, Mn, Hg, As), in intertidal surface sediments. The Mz of the surface sediments ranged from 2.1 to 8.3$\phi$, indicating that the surface sediments consist of various sedimentary facies, such as sand, slightly gravelly mud, sandy mud, and silt. The IL and COD in surface sediment ranged from 0.8 to 5.5% (mean $2.9\pm1.2%$) and from 3.9 to $13.8\;mgO_2/g{\cdot}dry$ (mean $8.5\pm2.6\;mgO_2/g{\cdot}dry$), respectively, which were lower than the values for surface sediment in areas near fish and shellfish farms or industrial complexes. No AVS was detected at any sampling station, despite various sedimentary facies. Most of metallic elements in surface sediments showed relatively good positive correlations with Mz and IL, which imply that the concentrations of metallic elements are mainly controlled by grain size and the organic matter content. The concentrations of metallic elements, except As, at some stations were considerably lower than those in the Sediment Quality Guideline (Effect Range Low, ERL) proposed by the National Oceanic and Atmospheric Administration (NOAA) in the United States. Similarly, the geoaccumulation index (Igeo) class indicated that pollution by metallic elements in intertidal surface sediment, except As, was moderate or non-existent. Our results imply that the intertidal surface sediments along the southwestern coast of Korea are not polluted by organic matter and metallic elements and are healthy for benthic organisms.

Chemical Components and Physiological Activities of Bamboo (Phyllostachys bambusoides Starf) Extracts Prepared with Different Methods (추출방법에 따른 대나무(왕대) 추출물의 화학성분 및 생리활성)

  • Ju, In-Ok;Jung, Gi-Tai;Ryu, Jeong;Choi, Joung-Sik;Choi, Yeong-Geun
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.542-548
    • /
    • 2005
  • Chemical components and physiological activities Bamboo (Phyllostachys bambusoides Starf) extracts obtained by burning, dry heating or extracting with water or 70% ethanol and were investigated. Contents of soluble solid and total phenolic compounds were highest in the ethanol extract. Contents of polyphenols such as catechin, chlorogenic acid, caffeic acid, 3-hydroxy benzoic acid and ferulic acid were determined. Free sugars consisted of galactose, glucose, fructose, and sucrose. Organic acids including citric, tartaric, malic, succinic, and acetic acid were present in the bamboo extracts. Antioxidant activities of dry heat and ethanol extracts were higher than those of BHA or ${\delta}-tocopherol$. Nitrite- scavenging effect of extracts ranged from 84.7 to 99.6% at pH 1.2 ana 3.0. Tyrosinase-inhibitory activity was higher in the water extract, and SOD-like and ACE-inhibitory activity were highest in tile dry kent extract. Antimicrobial activities of the bamboo extracts were strong against Bacillus subtilis, Escherichia coli O157, and Staphylococcus aureus.

Distribution of Organic Matters and Metallic Elements in the Surface Sediments of Masan Harbor, Korea (마산항 표층 퇴적물의 유기물 및 금속원소의 분포)

  • Hwang Dong-Woon;Jin Hyun-Gook;Kim Seong-Soo;Kim Jung-Dae;Park Jong-Soo;Kim Seong-Gil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.39 no.2
    • /
    • pp.106-117
    • /
    • 2006
  • We measured the concentrations of organic matter and metallic elements (Al, Fe, Cr, Mn, Ni, Cu, Zn, As, Cd, Pb and Hg) in the surface sediments of Masan Harbor (in the southern sea, Korea) to evaluate the geochemical characters of sediment and the pollutions by organic matter and metallic elements. The mean grain size of the surface sediments in the study area ranged from $5.6{\phi}$ to $7.8{\phi}$, indicating silt sediment. The water content of the surface sediments exceeded 60% except at some stations. The contents of ignition loss (IL), total organic carbon (TOC) and total nitrogen (TN) ranged from 7.2-14.3%, 1.2-3.2%, and 0.10-0.28%, respectively. Based on the C/N ratios, the organic matter in the surface sediments of Masan Harbor may originate from terrigenous sources including fluvial inputs (mainly sewage in urban areas). The chemical oxygen demand (COD) and acid volatile sulfide (AVS) ranged from $11.3-29.9\;mgO_2/g\;dry$ and 0.20-4.47 mgS/g dry, respectively, and low concentrations were observed near a shipping route. In addition, the concentrations of metallic elements showed large spatial variations in Masan Harbor and the distributions of metallic elements were also comparable to those of organic matter. This implies that the distributions of organic matter and metallic elements in the surface sediments of Masan Harbor are mainly controlled by biogenic matter and artificial action (mainly dredging). In addition, we calculated the enrichment facto. (EF) and geoaccumulation index (Igeo) in order to evaluate pollution by metallic elements. The enrichment of metallic elements relative to Al was three to eighteen times higher at the study sites, compared to levels in the Earth's crust except for Fe, Ni and Mn. In addition, the Igeo class indicated that the surface sediments in the study area were moderately to strongly polluted in terms of metallic elements.

A Study on the Influence of Water Quality on the Phosphorus Fraction Properties from Reservoir Sediments (저수지 퇴적물로부터 인의 존재형태가 수질에 미치는 영향에 대한 연구)

  • Lee, Jin-Kyung;Ahn, Tae-Woong;Oh, Jong-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.9
    • /
    • pp.840-850
    • /
    • 2010
  • The present study was attempted to find the effects of structural properties of phosphorus on the water quality of Gyehwa reservoir in Saemangeum. Relationship of phosphorus fractions between water and sediment properties was closely examined, and a few types of phosphorus were found from the sample sediment as : Saloid-P, Al-P, Fe-P, Ca-P, Red-P and Occd-P. Saloid-P (1.4%), Al-P (0.5%), Fe-P (39.8%), Ca-P (56.6%), Red-P (0.4%), Occd-P (1.3%) were extracted in a mass basis from the sediment of Gyehwa reservoir. Approximately more than 97% of phosphorus were calcium related phosphorus (Ca-P, 56%) and iron bound phosphorus (Fe-P, 39.8%). The Fe-P closely relates with water quality of T-N (r=0.761, p<0.05), $NO_3$-N (r=0.754, p<0.05), $NH_4$-N (r=0.728, p<0.05), T-P (r=0.774, p<0.05) and $PO_4$-P (r=0.767, p<0.05) while the Ca-P did not show any consistent dependency on the water quality. On the other hand, the correlation of Ca-P with $P_2O_5$ was high with r=0.783 (p<0.05) in the sediment. The Fe-P was affected significantly on the Ignition Loss (r=0.569, p<0.05), T-N (r=0.715, p<0.05) and T-P (r=0.983, p<0.01). In the research of correlation between phosphorus fraction and heavy metals in the sediment, Ca-P did not show any specific relationships with heavy metals. The Fe-P showed a significant correlation with As (r=0.817, p<0.01), Cu (r=0.793, p<0.05), Cd (r=0.786, p<0.05), Zn (r=0.738, p<0.05), so that it can be stated that the presence of Fe-P may implicate the volume of various metallic elements.

Environmental Geochemistry and Heavy Matel Contamination of Ground and Surface Water, Soil and Sediment at the Kongjujuil Mine Creek, Korea (공주제일광산 수계에 분포하는 지하수, 지표수, 토양 및 퇴적물의 환경지구화학적 특성과 중금속 오염)

  • 이찬희
    • Economic and Environmental Geology
    • /
    • v.32 no.6
    • /
    • pp.611-631
    • /
    • 1999
  • Enviromental geochemisty and heary metal contamination at the Kongjueil mine creek were underaken on the basis of physicohemical properties and mineralogy for various kinds of water (surface, mine and ground water),soil, precipitate and sediment collected of April and December in 1998. Hydrgeochemical composition of the water samples are characterized by relatively significant enricant of Ca+Na, alkiali ions $NO_3$ and Cl inground and surfore water, wheras the mine waters are relatively eneripheral water of the mining creek have the characteristics of the (Ca+Mg)-$(HCO_3+SO_4)$type. The pH of the mine water is high acidity (3.24)and high EC (613$\mu$S/cm)compared with those of surface and ground water. The range of $\delta$D and $\delta^{18}O$ values (relative to SMOW) in the waters are shpwn in -50.2 to -61.6% and -7.0 to -8.6$\textperthousand$(d value=5.8 to 8.7). Using computer program, saturation index of albite, calcite, dolomite in mine water are nearly saturated. The gibbiste, kaolinite and smectite are superaturated in the surface and ground water, respectively. Calculated water-mineral reaction and stabilities suggest that weathing of silicate minerals may be stable kaolinite owing to the continuous water-rock reaction. Geochemical modeling showed that mostly toxic heavy metals may exist larfely in the from of metal-sulfate $(MSO_4\;^2)$and free metal $(M^{2+})$ in nmine water. These metals in the ground and surface water could be formed of $CO_3$ and OH complex ions. The average enrichment indices of water samples are 2.72 of the groundwater, 2.26 of the surface water and 14.15 of the acid mine water, normalizing by surface water composition at the non-mining creek, repectively. Characteristics of some major, minor and rate earth elements (Al/Na, K/Na, V/Ni, Cr/V, Ni/Co, La/Ce, Th/Yb, $La_N/Yb_N$, Co/Th, La/Sc and Sc/Th) in soil and sediment are revealed a narrow range and homogeneous compositions may be explained by acidic to intermediate igneous rocks. And these suggested that sediment source of host granitic gneiss colud be due to rocks of high grade metamorphism originated by sedimentary rocks. Maximum concentrations of environmentally toxic elements in sediment and soil are Fe=53.80 wt.% As=660, Cd=4, Cr=175, Cu=158, Mn=1010, Pb=2933, Sb=4 and Zn=3740 ppm, and extremely high concentrations are found are found in the subsurface soil near the ore dump and precipitates. Normalizing by composition of host granitic gneiss, the average enerichment indices are 3.72 of the sediments, 3.48 of the soils, 10.40 of the precipitates of acid mine drainage and 6.25 of the soils near the main adit. The level of enerichment was very severe in mining drainage sediments, while it was not so great in the soils. mineral composition of soil and sediment near the mining area were partly variable being composed of quartz, mica, feldspar, chlorite, vermiculite, bethierin and clay minerals. reddish variable being composed of quartz, mica, feldspar, chlorite, vermiculite, bethierin and clay minerals. Reddish brown precipitation mineral in the acid mine drainage identifies by schwertmanite. From the separated mineralgy, soil and sediment are composed of some pyrite, arsenopyite, chalcopyrite, sphalerite, galena, malachite, goethite and various kinds of hydroxied minerals.

  • PDF

Carbon nanotube field emission display

  • Chil, Won-Bong;Kim, Jong-Min
    • Electrical & Electronic Materials
    • /
    • v.12 no.7
    • /
    • pp.7-11
    • /
    • 1999
  • Fully sealed field emission display in size of 4.5 inch has been fabricated using single-wall carbon nanotubes-organic vehicle com-posite. The fabricated display were fully scalable at low temperature below 415$^{\circ}C$ and CNTs were vertically aligned using paste squeeze and surface rubbing techniques. The turn-on fields of 1V/${\mu}{\textrm}{m}$ and field emis-sion current of 1.5mA at 3V/${\mu}{\textrm}{m}$ (J=90${\mu}{\textrm}{m}$/$\textrm{cm}^2$)were observed. Brightness of 1800cd/$m^2$ at 3.7V/${\mu}{\textrm}{m}$ was observed on the entire area of 4.5-inch panel from the green phosphor-ITO glass. The fluctuation of the current was found to be about 7% over a 4.5-inch cath-ode area. This reliable result enables us to produce large area full-color flat panel dis-play in the near future. Carbon nanotubes (CNTs) have attracted much attention because of their unique elec-trical properties and their potential applica-tions [1, 2]. Large aspect ratio of CNTs together with high chemical stability. ther-mal conductivity, and high mechanical strength are advantageous for applications to the field emitter [3]. Several results have been reported on the field emissions from multi-walled nanotubes (MWNTs) and single-walled nanotubes (SWNTs) grown from arc discharge [4, 5]. De Heer et al. have reported the field emission from nan-otubes aligned by the suspension-filtering method. This approach is too difficult to be fully adopted in integration process. Recently, there have been efforts to make applications to field emission devices using nanotubes. Saito et al. demonstrated a car-bon nanotube-based lamp, which was oper-ated at high voltage (10KV) [8]. Aproto-type diode structure was tested by the size of 100mm $\times$ 10mm in vacuum chamber [9]. the difficulties arise from the arrangement of vertically aligned nanotubes after the growth. Recently vertically aligned carbon nanotubes have been synthesized using plasma-enhanced chemical vapor deposition(CVD) [6, 7]. Yet, control of a large area synthesis is still not easily accessible with such approaches. Here we report integra-tion processes of fully sealed 4.5-inch CNT-field emission displays (FEDs). Low turn-on voltage with high brightness, and stabili-ty clearly demonstrate the potential applica-bility of carbon nanotubes to full color dis-plays in near future. For flat panel display in a large area, car-bon nanotubes-based field emitters were fabricated by using nanotubes-organic vehi-cles. The purified SWNTs, which were syn-thesized by dc arc discharge, were dispersed in iso propyl alcohol, and then mixed with on organic binder. The paste of well-dis-persed carbon nanotubes was squeezed onto the metal-patterned sodalime glass throuhg the metal mesh of 20${\mu}{\textrm}{m}$ in size and subse-quently heat-treated in order to remove the organic binder. The insulating spacers in thickness of 200${\mu}{\textrm}{m}$ are inserted between the lower and upper glasses. The Y\ulcornerO\ulcornerS:Eu, ZnS:Cu, Al, and ZnS:Ag, Cl, phosphors are electrically deposited on the upper glass for red, green, and blue colors, respectively. The typical sizes of each phosphor are 2~3 micron. The assembled structure was sealed in an atmosphere of highly purified Ar gas by means of a glass frit. The display plate was evacuated down to the pressure level of 1$\times$10\ulcorner Torr. Three non-evaporable getters of Ti-Zr-V-Fe were activated during the final heat-exhausting procedure. Finally, the active area of 4.5-inch panel with fully sealed carbon nanotubes was pro-duced. Emission currents were character-ized by the DC-mode and pulse-modulating mode at the voltage up to 800 volts. The brightness of field emission was measured by the Luminance calorimeter (BM-7, Topcon).

  • PDF

Ni/Au Electroless Plating for Solder Bump Formation in Flip Chip (Flip Chip의 Solder Bump 형성을 위한 Ni/Au 무전해 도금 공정 연구)

  • Jo, Min-Gyo;O, Mu-Hyeong;Lee, Won-Hae;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.6 no.7
    • /
    • pp.700-708
    • /
    • 1996
  • Electroless plating technique was utilized to flip chip bonding to improve surface mount characteristics. Each step of plating procedure was studied in terms pf pH, plating temperature and plating time. Al patterned 4 inch Si wafers were used as substrstes and zincate was used as an activation solution. Heat treatment was carried out for all the specimens in the temperature range from room temperature to $400^{\circ}C$ for $30^{\circ}C$ minutes in a vacuum furnace. Homogeneous distribution of Zn particles of size was obtained by the zincate treatment with pH 13 ~ 13.5, solution concentration of 15 ~ 25% at room temperature. The plating rates for both Ni-P and Au electroless plating steps increased with increasing the plating temperature and pH. The main crystallization planes of the plated Au were found to be (111) a pH 7 and (200) and (111) at pH 9 independent of the annealing temperature.

  • PDF