• Title/Summary/Keyword: Cu removal efficiency

Search Result 209, Processing Time 0.025 seconds

Removal of Carbon Monoxide from Anthracite Flue Gas by Catalytic Oxidation (I) (촉매반응에 의한 연탄 연소가스로부터 일산화탄소의 제거 (제1보))

  • Chung Ki Ho;Lee, Won Kook
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.431-437
    • /
    • 1976
  • On the condition of adequate air supply, complete removal of carbon monoxide,occurred above $650^{\circ}C$. Using catalysts, the oxidation of carbon monoxide occurred at lower temperatures; on both $MnO_2 \;and\;30%\;MnO_2-70%\;CuO\;at\;250{\circ}C,\;on\;CuO\;at\;450{\circ}C,\;on\;50%\;MnO_2-50%\;CuO\;at\;200{\circ}C,\;and\;on\;70%\;MnO_2-30%\;CuO\;at\;180{\circ}C$. Manganese dioxide (p-type) showed higher activity than cupric oxide (n-type) and a catalyst consisting of 60% $MnO_2-40%$ CuO had the highest activity of all the $MnO_2$-CuO mixture. Over the range of transitional temperature, carbon monoxide removal efficiency decreased linearly with increasing inlet carbon monoxide concentration while temperature was fixed. Residence time of gases in the catalytic reactor, in the range of 0.9 to 1.8 seconds, gave no effect on carbon monoxide conversion.

  • PDF

Effect of Groundwater Anions and pH on the Sorption Removal of Heavy Metals by Bentonite (벤토나이트의 중금속 흡착제거에 대한 pH와 지하수 음이온의 영향)

  • 정찬호
    • Economic and Environmental Geology
    • /
    • v.33 no.1
    • /
    • pp.31-40
    • /
    • 2000
  • Sorption characteristics of Pb, Cu, Cd, and Zn onto Ca- and Na-bentonites were investigated by the batch experiments in the condition of various pHs and concentrations of groundwater major anions (${So_4}^{2-}$ and ($HCO_3$), which can form a complex with heavy metals. The sorption removal of heavy metals steadily increases as pH increases. The sorption capability about heavy metals of both Ca-bentonite and Na-bentonite is in the order of Pb>Cu>Zn>Cd. The effect of pH and selectivity of heavy metals of bentonites were explained by the change of surface charge of bentonite and the speciation of heavy metals. Na-bentonite has a little higher sorption ability about heavy metals than that of Ca-bentonite. A high sorption removal of Pb in 0.1M sulfate solution may be attributed to the precipitation of $PbSo_4$(anglesite). However, sulfate has a slight effect on the sorption of CU, Cd and Zn. More than 99% of heavy metals were removed from the 0.1 M bicarbonate solution. However, the efficiency of sorption removal of heavy metals highly decreases in the bicarbonate solution of $10^{-2}$M to $10^{-4}$M. The speciation and saturation index calculated by the WATEQ4F program indicate that the sorption of anionic complexes such as ${Pb(CO_3)_2}^{2-}$, ${Cd(CO_3)_2}^{2-}$, ${Zn(CO_3)_2}^{2-}$, ${Cu(CO_3)_2}^{2-}$ and the precipitation of the solid phases such as $PbCO_3$(cerrusite), $ZnCO_3$(smithsonite), $CdCO_3$(obtavite) are involved in sorption removal of heavy metals in bicarbonate solution. The sorption capability about heavy metals of bentonites in the presence of anions shows the following order: Pb>Cu Cd>Zn.

  • PDF

Pilot scale membrane separation of plating wastewater by nanofiltration and reverse osmosis

  • Jung, Jaehyun;Shin, Bora;Lee, Jae Woo;Park, Ki Young;Won, Seyeon;Cho, Jinwoo
    • Membrane and Water Treatment
    • /
    • v.10 no.3
    • /
    • pp.239-244
    • /
    • 2019
  • Plating wastewater containing various heavy metals can be produced by several industries. Specifically, we focused on the removal of copper (Cu2+) and nickel (Ni+) ions from the plating wastewater because all these ions are strictly regulated when discharged into watershed in Korea. The application of both nanofiltration (NF) and reverse osmosis (RO) technologies for the treatment of wastewater containing copper and nickel ions to reduce fresh water consumption and environmental degradation was investigated. In this work, the removal of copper (Cu2+) and nickel (Ni+) ions from synthetic water was studied on pilot scale remove by before using two commercial nanofiltration (NF) and reverse osmosis(RO) spiral-wound membrane modules (NE2521-90 and RE2521-FEN by Toray Chemical). The influence of main operating parameters such as feed concentration on the heavy metals rejection and permeate flux of both membranes, was investigated. Synthetic plating wastewater samples containing copper ($Cu^{2+}$) and nickel ($Ni^{2+}$) ions at various concentrations(1, 20, 100, 400 mg/L) were prepared and subjected to treatment by NF and RO in the pilot plant. The results showed that NF, RO process, with 98% and 99% removal for copper and nickel, respectively, could achieve high removal efficiency of the heavy metals.

Simultaneous Removal of Cadmium and Copper from a Binary Solution by Cathodic Deposition Using a Spiral-Wound Woven Wire Meshes Packed Bed Rotating Cylinder Electrode

  • Al-Saady, Fouad A.A.;Abbar, Ali H.
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.58-66
    • /
    • 2021
  • Spiral-wound woven wire meshes packed bed rotating cylinder electrode was used for the simultaneous removal of cadmium (Cd) and copper (Cu) from a binary solution. The effects of weight percent of each metal on the removal and current efficiencies were studied at an operating current of 345A, while the effect of current on the removal efficiency of both metals was investigated at three levels of current (240, 345.and 400 mA). The experiments were carried out at constant rotation speed 800 rpm, pH = 3, and a total concentration of metals (500 ppm). The results showed that the removal efficiency of copper increased from 89% to 99.4% as its weight percent increased from 20% to100%. In a similar fashion, the removal efficiency of cadmium increased from 81% to 97% as its weight percent increased from 20% to100%. The results confirmed that the removal efficiency of any metals declined in the presence of the other. Increasing of current resulted in increasing the removal efficiency of both metals at different weight percents. The results confirmed that current efficiencies for removing of copper and cadmium simultaneously decline with increasing of electrolysis time and weight percent of cadmium or with decreasing the weight percent of copper. Current efficiency was higher at the initial stage of electrolysis for all weight percents of metals. The results showed that the decay of copper concentration was exponential at all weight percents of copper, confirming that the electrodeposition of copper is under mass transfer control in the presence of cadmium. While the decay of cadmium concentration was linear at lower weight percent of cadmium then changed to an exponential behavior at high weight percent of cadmium in the presence of copper.

Dry cleaning for metallic contaminants removal after the chemical mechanical polishing (CMP) process (Chemical Mechnical Polishing(CMP) 공정후의 금속오염의 제거를 위한 건식세정)

  • 전부용;이종무
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.2
    • /
    • pp.102-109
    • /
    • 2000
  • It is difficult to meet the cleanliness requirement of $10^{10}/\textrm{cm}^2$ for the giga level device fabrication with mechanical cleaning techniques like scrubbing which is widely used to remove the particles generated during Chemical Mechanical Polishing (CMP) processes. Therefore, the second cleaning process is needed to remove metallic contaminants which were not completely removed during the mechanical cleaning process. In this paper the experimental results for the removal of the metallic contaminants existing on the wafer surface using remote plasma $H_2$ cleaning and UV/$O_3$ cleaning techniques are reported. In the remote plasma $H_2$ cleaning the efficiency of contaminants removal increases with decreasing the plasma exposure time and increasing the rf-power. Also the optimum process conditions for the removal of K, Fe and Cu impurities which are easily found on the wafer surface after CMP processes are the plasma exposure time of 1min and the rf-power of 100 W. The surface roughness decreased by 30-50 % after remote plasma $H_2$ cleaning. On the other hand, the highest efficiency of K, Fe and Cu impurities removal was achieved for the UV exposure time of 30 sec. The removal mechanism of the metallic contaminants like K, Fe and Cu in the remote plasma $H_2$ and the UV/$O_3$ cleaning processes is as follows: the metal atoms are lifted off by $SiO^*$ when the $SiO^*$is evaporated after the chemical $SiO_2$ formed under the metal atoms reacts with $H^+ \; and\; e^-$ to form $SiO^*$.

  • PDF

The removal of heavy metals by crab shell in aqueous solution (게 껍질을 이용한 수중의 중금속 제거)

  • An, Hee-Kyung;Park, Byung-Yoon;Kim, Dong-Seog
    • Journal of Environmental Science International
    • /
    • v.9 no.5
    • /
    • pp.409-414
    • /
    • 2000
  • In order to examine the availability and effectiveness of crab shell for the removal of heavy metals in aqueous solution the crab shell was compared with cation exchange resin(CER), zeolite granular activated carbon (GAC) and powdered activated carbon(PAC) on aspects of heavy metal removal capacity rate and efficiency. In the removal of Pb, Cd and Cr, the heavy metal removal capacity of crab shell was higher than those of any other sorbents (CER, zeolite, GAC, PAC) and the order of heavy metal removal capacity was crab shell>CER>zeolite>PAC GAC. However in the removal of Cu, the result of crab shell was slightly lower than that of CER. The initial heavy metal removal rate was affected by the sorts of sorbents and metals. In all heavy metals the heavy metal removal rate of crab shell was higher than those of any other sorbents. Under the heavy metal concentration of 1.0 mmole/$\ell$ the heavy metal removal efficiency of crab shell was maintained as 93~100% which was much higher than those of any other sorbents.

  • PDF

Removal and Regeneration of $SO_2$ by Cupric Oxide Supported on Zeolite (CuO/Zeolite에 의한 $SO_2$의 제거 및 재생)

  • 이승재;신창섭;이태희
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.6 no.2
    • /
    • pp.161-167
    • /
    • 1990
  • The reaction of sulfur dioxide with cupric oxide supported on zeolite was investigated over a temperature range of $250{\sim}450^{{\circ}C$. After the completion of the $SO_2$ removal reaction, the cupric sulfate produced was regenerated to copper by hydrogen or LPG. The experimental results showed that the removal efficiency of $SO_2$ was improved with temperature increase and with $SO_2$ inlet concentration decrease. The reaction of $SO_2$ with CuO/Zeolite was well explained by the shrinking unreacted core model using first order chemical reaction control and diffusion control. THe reaction rate constant and the effective diffusivity were respectively as follows: 1k (cm/s) = 2.519 exp[-10991 (cal/mol)/RT] $De(cm^2/s) = 2.06 \times 10^{-5} exp[-8380 (cal/mol)/RT]$

  • PDF

Characteristics of Growth and Metal Removal in Recombinant Saccharomyces cerevisiae harboring a Metallothionein Gene (Metallothionein 유전자가 도입된 재조합 Saccharomyces cerevisiae의 생육과 금속제거에 대한 특성)

  • 정동환;김대옥서진호
    • KSBB Journal
    • /
    • v.10 no.5
    • /
    • pp.475-481
    • /
    • 1995
  • The effect of metallothionein expression on the metal resistance and removal by recombinant Saccharomyces cerevisiae containing the plasmid pJW9 was investigated. The recombinant strain S. cerevisiae BZ-pJ was constructed by transforming the host strain S. cerevisiae BZ3l-1-7Ba with the gene coding for a metal-binding protein, metallothionein. Introduction of the MT gene yielded an increase in the minimum inhibitory concentration (MIC) of copper more than three times compared with the host strain. The minimum inhibitory concentrations of $Cr^{2+}, Znr^{2+} and Pb^{2+}, $ were not different for the two strains. The recombinant yeast grown in a medium containing 8mM CuSO4 was able to remove copper with a capacity of 18.9mg $Cu^{2+}$/g dry cell. In a mixture of copper and zinc, the presence of copper relieved the toxic effects caused by zinc, resulting in an enhancement of the final cell density and the specific growth rate of the recombinant yeast. The capability to remove copper by the recombinant yeast was linearly proportional to the copper concentrations in the medium. The efficiency of copper removal was rather constant regardless of the initial copper concentrations. The specific removal of zinc was dependent on the zinc concentrations in media, though, and such dependence was not so pronounced as the concentration of copper.

  • PDF

Performance Evaluation of the Multistage Soil Washing Efficiency for Remediation of Mixed-contaminated Soil with Oil and Heavy Metals (유류/중금속 복합오염토양 정화를 위한 다단 토양세척 효율평가)

  • Kim, Daeho;Park, Kwangjin;Cho, Sungheui;Kim, Chikyung
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.2
    • /
    • pp.33-40
    • /
    • 2017
  • In typical remediation practices, separate washing systems have to be applied to clean up the soils contaminated with both oil and heavy metals. In this study, we evaluated the efficiency of successive two-stage soil washing in removal of mixed-contaminants from soil matrix. Two-stage soil washing experiments were conducted using different combinations of chemical agent: 1) persulfate oxidation, followed by organic acid washing, and 2) Fenton oxidation, followed by inorganic acid washing. Persulfate oxidation-organic acid washing efficiently removed both organic and inorganic contaminants to meet the regulatory soil quality standard. The average removal rates of total petroleum hydrocarbons (TPH), Cu, Pb, and Zn were 88.9%, 82.2%, 77.5%, and 66.3% respectively, (S/L 1:10, reaction time 1 h, persulfate 0.5 M, persulfate:activator 3:1, citric acid 2 M). Fenton oxidation-inorganic acid washing also gave satisfactory performances to give 89%, 80.9%, 87.1%, and 67.7% removal of TPH, Cu, Pb, and Zn, respectively (S/L 1:10, reaction time 1 hr, hydrogen peroxide 0.3 M, hydrogen peroxide:activator 5:1, inorganic acid 1 M).

Adsorption Characteristics of Arsenic using the Recycled Aluminium Oxide (재생 알루미늄 산화물을 이용한 비소 흡착 특성)

  • Min, Kyung-Chul;Kim, Won-Gee;Lee, Seung-Mok;Kim, Keun-Han;Lee, Hee-Yong;Yang, Jae-Kyu;Park, Youn-Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.486-490
    • /
    • 2011
  • As(V) adsorption on aluminum oxide powder which was recycled from industrial wastes containing aluminum hydroxide was evaluated. Aluminum oxide powder in this study was prepared by calcinating aluminum hydroxide wastes at$550^{\circ}C$. Spectroscopic analysis indicated that the aluminum hydroxide wastes were changed to aluminum oxide by calcination. Arsenic adsorption isotherm was conducted with variation of ionic strength and multiple-ion systems using Ca(II) and Cu(II). As(V) removal showed typical anionic adsorption characteristics that the removal efficiency decreased with increasing pH in single As(V) system as well as in binary and ternary system. More than 80% of As(V) at an initial concentration of $5{\times}10^{-5}$ M was removed from aluminum oxide powder in As(V) single system. The effect of ionic strength on As(V) adsorption was negligible, which indicated the strong bonding between aluminum oxide powder and As(V). The removal efficiency of As(V) was higher in a binary system with Cu(II) than in a binary system with Ca(II).