• Title/Summary/Keyword: Cu removal efficiency

검색결과 208건 처리시간 0.021초

촉매-플라즈마 반응 시스템을 이용한 황화수소의 처리특성 연구 (Characteristics of Hydrogen Sulfide Removal by a Catalyst-assisted Plasma System)

  • 이정근;김혁규;봉춘근;박성진;이명화;황의현;김종호
    • 한국대기환경학회지
    • /
    • 제27권4호
    • /
    • pp.379-386
    • /
    • 2011
  • Catalyst-assisted plasma system with a DBD (Dielectric Barrier Discharge) reactor was used to remove hydrogen sulfide, which is one of the odorous species in this study. The ${\gamma}-Al_2O_3$ and ${\beta}$-Zeolite catalysts impregnated by Ag, Cu and Mn species were employed as catalysts and their $H_2S$ removal characteristics under plasma irradiation were investigated. From the experimental study, we found that the $H_2S$ removal efficiency increases with decreasing space velocity in the system and increasing specific input energy. Furthermore, ${\beta}$-Zeolite catalysts are efficient to remove $H_2S$ than ${\gamma}-Al_2O_3$ catalysts. Especially, the catalysts impregnated by Ag have higher removal efficiency than other catalysts (Cu, Mn).

Effective adsorption of lead and copper from aqueous solution by samaneasaman and banana stem

  • Harish, Narayana;Janardhan, Prashanth;Sangami, Sanjeev
    • Advances in environmental research
    • /
    • 제7권3호
    • /
    • pp.225-237
    • /
    • 2018
  • The sorption of metal ions with low-cost adsorbents plays an important role in sustainable development. In the present study, the efficacy of sugarcane bagasse, rain tree fruits (samaneasaman), banana stem and their mixtures, used as bio-sorbents, in the removal of Cu(II) and Pb(II) ions from aqueous solution is evaluated. Batch studies are conducted, and residual ions were measured using Inductively Coupled Plasma (ICP)-atomic spectrometer. Effect of pH, initial metal ion concentration, reaction time and adsorbent dosage are studied. The Pb(II) removal efficiency was observed to be 97.88%, 98.60% and 91.74% for rain tree fruits, banana stem and a mixture of adsorbents respectively. The highest Cu(II) ion removal was observed for sugarcane bagasse sorbent with an efficiency of 82.10% with a pH of 4.5 and a reaction time of 90 min. Finally, desorption studies were carried out to study the leaching potential of adsorbent, and it was found that the adsorbent is stable in water than the other leaching agents such as HCl, ammonium acetate, Sodium EDTA. Hence, these adsorbents can be effectively used for the removal of these heavy metals.

제2연화광산 직내골 광미장 침출수에 오염된 하천수계의 시.공간적 수질변화 및 중금속 제거효율 (Temporal and Spatial Variation and Removal Efficiency of Heavy Metals in the Stream Water Affected by Leachate from the Jiknaegol Tailings Impoundment of the Yeonhwa II Mine)

  • 이평구;강민주;최상훈
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제16권1호
    • /
    • pp.19-31
    • /
    • 2011
  • This study had been carried out to investigate spatial and temporal variations of the concentrations of trace metals for contaminated surface water in creek affected by leachate from the tailings impoundment of the Yeonhwa II mine for about 2 years. It was also to ascertain the metal removal efficiency for potentially deleterious metals by the artificial and natural attenuation processes such as retention ponds and hydrologic mixing of uncontaminated tributaries. The concentrations of As, Pb, Cd, and Cu for leachate in the rainy season were not detected. On the other hand, the concentrations of Zn, Fe, Mn, Al, and $SO_4^{2-}$ in the rainy season for leachate were 2-66 times higher than those in the dry season, due to the oxidation of the sulfide minerals and the dissolution of the secondary minerals. The concentrations of Zn and Cd for leachate and surface water of the upper creek in the rainy season exceeded the criteria of River Water Quality and Drinking Water Quality but in the dry season, those of analyzed all the metals (As, Pb, Cd, Cu, Zn, Cd, Fe, Mn, and Al) for surface water sampled at the study area were below the criteria of River Water Quality and Drinking Water Quality. In regard of the attenuation efficiency for the concentrations of metals, Fe, Mn, Al, Zn, Cd, As, and Cu were removed highly at retention ponds, while the removal efficiency for major cations and sulfate ($SO_4^{2-}$) were related to mixing of the uncontaminated tributaries. Therefore, the major attenuation processes of the metal and sulfate contents in creek affected by leachate from a tailing dump were precipitation (accompanied by metal co-precipitation and sorption), water dilution, and neutralization.

황산바륨의 공침현상을 이용한 중금속 이온의 제거 (Removal of heavy metal by coprecipitation with barium sulfate)

  • 임헌성;임석근
    • 분석과학
    • /
    • 제19권4호
    • /
    • pp.280-284
    • /
    • 2006
  • The objective of this study is to investigate the removal of heavy metal by using the coprecipitation of barium sulfate. Several parameters governing the efficiency of the coprecipitation method were evaluated by the pH of sample solution, amount of coprecipitant, and addition of sulfide for the removal of As(V), Cd(II), Cr(III), Cr(VI), Cu(II), Hg(II) and Pb(II) metal ions ($10{\mu}g/ml$ each). The coprecipitation was about 80% - 95% only for lead at low pH but under 10% for other ions. The amount of removal was about 95% - 100% for Cd, Hg, Pb, Cu in the all pH range by the addition of sulfide with barium sulfate but As(V) and Cr(III, VI) ions were not affected by the same conditions.

Cu(II)를 이용하여 표면개질된 활성탄의 인산염 제거효율 향상 (Enhancement of phosphate removal using copper impregnated activated carbon(GAC-Cu))

  • 신정우;강서연;안병렬
    • 상하수도학회지
    • /
    • 제35권6호
    • /
    • pp.455-463
    • /
    • 2021
  • The adsorption process using GAC is one of the most secured methods to remove of phosphate from solution. This study was conducted by impregnating Cu(II) to GAC(GAC-Cu) to enhance phosphate adsorption for GAC. In the preparation of GAC-Cu, increasing the concentration of Cu(II) increased the phosphate uptake, confirming the effect of Cu(II) on phosphate uptake. A pH experiment was conducted at pH 4-8 to investigate the effect of the solution pH. Decrease of phosphate removal efficiency was found with increase of pH for both adsorbents, but the reduction rate of GAC-Cu slowed, indicating electrostatic interaction and coordinating bonding were simultaneously involved in phosphate removal. The adsorption was analyzed by Langmuir and Freundlich isotherm to determine the maximum phosphate uptake(qm) and adsorption mechanism. According to correlation of determination(R2), Freundlich isotherm model showed a better fit than Langmuir isotherm model. Based on the negative values of qm, Langmuir adsorption constant(b), and the value of 1/n, phosphate adsorption was shown to be unfavorable and favorable for GAC and GAC-Cu, respectively. The attempt of the linearization of each isotherm obtained very poor R2. Batch kinetic tests verified that ~30% and ~90 phosphate adsorptions were completed within 1h and 24 h, respectively. Pseudo second order(PSO) model showed more suitable than pseudo first order(PFO) because of higher R2. Regardless of type of kinetic model, GAC-Cu obtained higher constant of reaction(K) than GAC.

피혁산업 부산물에 의한 용존 중금속 제거 특성 (Characteristics of Heavy Metal Removal from Aqueous Solutions using Leather Industry by-products)

  • 김근한;이남희;백인규;박재형;양재규
    • 대한환경공학회지
    • /
    • 제32권5호
    • /
    • pp.417-426
    • /
    • 2010
  • 본 연구에서는 가죽 생산 공정 중 원피 무게의 50% 이상 고형 폐기물로 발생하는 콜라겐 단백질의 섬유 기재에 미모사(Catechol Tannin) 및 채스트넛(Pyrogallol Tannin)과 같은 식물성 탄닌물질을 다양한 조건에서 고정화시킨 10 가지 다른 종류의 바이오 흡착제를 제조하였다. 제조한 각 바이오 흡착제들의 중금속 제거용 흡착제로서의 성능 평가를 위하여 Cu(II), Cd(II), Zn(II), Pb(II), Cr(III) 이온을 함유한 인공 오염수를 사용하여 다양한 반응 조건에서의 회분식 실험을 실시하였으며, 중금속들의 제거 특성을 규명하였다. 미모사를 탄닌물질로 사용하여 콜라겐에 고정화 반응을 시켰을 때 섬유 번들 내부로의 미모사의 침투력은 나프탈렌계 침투제의 주입량에 비례 하였다; 3% ${\geq}$ 1.5% > 0%. 모든 바이오 흡착제들에서 pH 3.0 이하에서는 중금속 이온들의 제거는 거의 일어나지 않았으나 pH 3.0 이상에서 중금속의 제거율이 급격히 발생하였으며 Zn(II)을 제외한 나머지 중금속이온들은 pH 6.0 이상에서는 거의 완전히 제거되었다. Cr(III)의 경우에는 바이오 흡착제 종류별 제거량이 매우 유사한 경향을 나타내었으나 Cu(II), Zn(II), Pb(II)의 제거에서는 축합형 탄닌(미모사)에 비해 이온결합이 가능한 다량의 카르복실기를 함유한 가수분해형 탄닌(채스트넛)을 사용하여 고정화시킨 바이오 흡착제에서 높은 제거능을 보였다. S10 바이오 흡착제에 대한 Pb(II) 및 Cu(II) 중금속 이온들의 흡착은 이온농도가 1,000배 변화거나 경쟁이온 화학종을 일하전 및 이하전 화학종을 사용하였을 때 영향을 받지 않았다.

Application of Ferrate(VI) on the Decomplexation of Cu(II)-EDTA

  • Tiwari, Diwakar;Yang, Jae-Kyu;Chang, Yoon-Young;Lee, Seung-Mok
    • Environmental Engineering Research
    • /
    • 제13권3호
    • /
    • pp.131-135
    • /
    • 2008
  • In this study, Fe(VI) was employed as a multi-functional agent to treat the simulated industrial wastewater contaminated with Cu(II)-EDTA through oxidation of EDTA, decomplexation of Cu(II)-EDTA and subsequent removal of free copper through precipitation. The decomplexation of $10^{-4}\;M$ Cu(II)-EDTA species was performed as a function of pH at excess concentration of Fe(VI). It was noted that the acidic conditions favor the decomplexation of Cu(II)-EDTA as the decomplxation was almost 100% up to pH 6.5, while it was only 35% at pH 9.9. The enhanced degradation of Cu(II)-EDTA with decreasing the pH could be explained by the different speciation of Fe(VI). $HFeO_4^-$ and $H_2FeO_4$, which are relatively more reactive than the unprotonated species $FeO_4^{2-}$, are predominant species below neutral pH. It was noted that the decomplexation reaction is extremely fast and within 5 to10 min of contact, 100% of Cu(II)-EDTA was decomplexed at pH 4.0. However, at higher pH (i.e., pH 10.0) the decomplexation process was relatively slow and it was observed that even after 180 min of contact, maximum ca 37% of Cu(II)-EDTA was decomplexed. In order to discuss the kinetics of the decomplexation of Cu(II)-EDTA, the data was slightly fitted better for the second order rate reaction than the first order rate reaction in the excess of Fe(VI) concentration. On the other hand, the removal efficiency of free Cu(II) ions was also obtained at pH 4.0 and 10.0. It was probably removed through adsorption/coagulation with the reduced iron i.e., Fe(III). The removal of total Cu(II) was rapid at pH 4.0 whereas, it was slow at pH 10.0. Although the decomplexation was 100% at lower pH, the removal of free Cu(II) was relatively slow. This result may be explicable due to the reason that at lower pH values the adsorption/coagulation capacity of Fe(III) is greatly retarded. On the other hand, at higher pH values the decomplexation of Cu(II)-EDTA was partial, hence, slower Cu(II) removal was occurred.

촉매 담지 코디어라이트 다공성 필터의 NOx/SOx 동시제거에 대한 연구 (Simultaneous Removal of NOx/SOx by Catalyst-loaded Cordierite Porous Filter)

  • 이시희;정구춘;김지웅;신민철;이희수
    • 분석과학
    • /
    • 제15권3호
    • /
    • pp.256-262
    • /
    • 2002
  • 평균입자크기가 200 ${\mu}m$인 코디어라이트 분말을 사용하여 다공성 필터를 제조한 후, 진공함침법으로 $V_2O_5$, CuO, $LaCoO_3$ 촉매를 담지시킨 후 NO와 $SO_2$ 기체를 촉매 담지 세라믹필터에 동시 통과시키면서 NOx/SOx의 동시제거효율을 측정하였다. 제조된 다공성 필터의 기공률은 61.6%였고, 압축강도는 12.3 MPa이었으며, 면속도 5 cm/sec에서의 차압은 147 Pa이었다. NO와 $SO_2$의 동시제거효율을 분석해 본 결과, 페로브스카이트계 $LaCoO_3$ 촉매의 동시제거효율이 가장 우수함을 확인하였으며, $LaCoO_3$ 촉매의 NO에 대한 제거효율은 90% 이상, $SO_2$에 대해서는 80% 이상이었다.

광산배수 처리를 위한 세멘테이션 공정 중 구리제거효율에 대한 철분 응집의 영향 (The Effects of Iron Powder Agglomeration on the Copper Removal Efficiency during Cementation Process for Treating Mine Drainages)

  • 나현진;엄유익;홍승관;유경근
    • 자원리싸이클링
    • /
    • 제28권5호
    • /
    • pp.74-79
    • /
    • 2019
  • 구리이온농도를 117.15 mg/L로 조절한 모의 광산배수용액 제조하고, 세멘테이션제로서 철분을 투입하여 세멘테이션 공정 중 구리이온제거효율에 대한 철분당량, 철분크기, 교반속도의 영향을 조사하였다. 교반속도가 200 rpm의 경우, 온도 $20^{\circ}C$에서 2 당량의 철분을 투입하면 90분에 51 %의 구리가 제거되었으나 16 당량의 철분을 투입하면 60분에 99 % 이상의 구리가 제거되었다. $48{\mu}m$ 이하와 $150{\mu}m$ 크기의 철분을 2당량 투입하여 구리제거율을 관찰한 결과 200 rpm에서는 큰 차이를 나타내지 않았으나 교반속도를 400 rpm으로 증가시킨 경우 두 입도 모두에서 구리제거효율을 크게 증가하였으며, 이는 200 rpm에서 철분의 입자가 응집되어 비표면적이 감소된 것이 원인으로 SEM분석을 통해 확인하였다. 교반속도 600 rpm, 반응온도 $20^{\circ}C$, $48{\mu}m$ 이하 철분 2 당량의 조건에서 60 분에 99 % 이상의 구리가 제거된 것을 확인하였다.

촉매반응에 의한 연탄 연소가스로부터 일산화탄소의 제거 (제1보) (Removal of Carbon Monoxide from Anthracite Flue Gas by Catalytic Oxidation (I))

  • 정기호;이원국
    • 대한화학회지
    • /
    • 제20권5호
    • /
    • pp.431-437
    • /
    • 1976
  • 연탄 연소가스중의 일산화탄소와 산소 사이의 반응을 몇가지 촉매에 대해 조사했다. 이산화망간, 산화 동 및 그 혼합촉매를 사용하였으며, 그 실효반응 온도(effective reaction temperature)는 각각 다음과 같다. 즉, $MnO_2$ 단독촉매 및 30% $MnO_2$-70% CuO 혼합촉매는 $250^{\circ}C,\;CuO$$450^{\circ}C$, 50% $MnO_2$-50% CuO는$200^{\circ}C$, 70% $MnO_2$-30% CuO는$180^{\circ}C$였다. 실효반응온도 이하에서 일산화탄소의 산화율은 일산화 탄소의 농도가 증가함에 따라 감소하는 경향을 보였으며, 실효반응 온도 이상에서는 변화가 없었다. 반응기 내 체재시간은 0.9 ∼ 1.8초의 범위 내에서는 일산화탄소 산화반응에 조금도 영향을 주지 않았다.

  • PDF