• Title/Summary/Keyword: Cu matrix

Search Result 443, Processing Time 0.029 seconds

Heat-ray Shielding Property of Nanocomposites of Poly(acrylic acid) Doped with Copper Sulfide

  • Gotoh, Yasuo;Shibata, Kazuaki;Fujimori, Yoshie;Ohkoshi, Yutaka;Nagura, Masanobu
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.71-72
    • /
    • 2003
  • The aim of our study is to prepare nanocomposites consisting polymer/inorganic nanoparticles and investigate their physical properties as a functional material. In this study, a nanocomposite of copper sulfide (CuS) nanoparticles introduced into a poly(acrylic acid) matrix was prepared and the optical absorption property was measured. The composite exhibited strong absorption of both ultraviolet and near-infrared rays, indicating that the composite is applicable to a solar radiation shielding filter. The wavelength of the near infrared absorption was controlled from ca.1000 nm to 1700 nm by heat and acidic solution treatments.

  • PDF

Finite Element Analysis on the Impactive Deformation of a Cu Particle in Cold Spraying Processing : Effect of Velocity (저온분사 공정에서 구리분말 충돌속도 변화에 따른 충돌변형 거동의 유한요소해석)

  • Cho, Kyu-Jin;Yoon, Seung-Chae;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.15 no.3
    • /
    • pp.227-233
    • /
    • 2008
  • Dynamic plastic deformation behavior of copper particles occurred during the cold spray processing was numerically analyzed using the finite element method. The study was to investigate the impact as well as the heat transfer phenomena, happened due to collision of the copper particle of $20{\mu}m$ in diameter with various initial velocities of $300{\sim}600m/s$ into the copper matrix. Effective strain, temperature and their distribution were investigated for adiabatic strain and the accompanying adiabatic shear localization at the particle/substrate interface.

Influence of External Air Velocity for Tribological Characteristics between Sintered Friction Material and Disk (외부 공기속도 변화에 따른 소결마찰재와 디스크간 마찰특성)

  • Lee, Jong Seong;Lee, Hi Sung
    • Tribology and Lubricants
    • /
    • v.29 no.1
    • /
    • pp.19-26
    • /
    • 2013
  • Cu-matrix sintered brake pads and low-alloy heat-resistant steel are commonly applied to basic brake systems in high-energy moving machines. In this research, we analyzed the tribological characteristics to determine the influence of the air velocity between the disk and pad. At a low brake pressure with airflow, the friction stability was decreased as a result of the lack of tribofilm formation at the disk surface. However, there were no significant changes in the friction coefficient under any of the test conditions. The wear rates of the friction materials were decreased with an increase in the airflow velocity. As a result, the airflow velocity influenced the friction stability, as well as the wear rate of the friction materials and disk, but not the friction coefficient.

Influence of Inertial Mass on Tribological Characteristics between Sintered Friction Material and Disk (관성에 따른 소결마찰재와 제동디스크간 마찰특성 연구)

  • Lee, Jong Seong;Kang, Bu Byoung;Lee, Hi Sung
    • Tribology and Lubricants
    • /
    • v.29 no.2
    • /
    • pp.98-104
    • /
    • 2013
  • Cu-matrix-sintered brake pads and heat-resistant low-alloy steel are commonly applied to basic brake systems in high-energy moving machines. We analyzed how the tribological characteristics are influenced by the inertial mass. A high inertial mass decreased the friction coefficient by about 15% compared to a low inertial mass under all velocity conditions. The wear rates of the friction materials increased with the inertial mass. Thus, the inertial mass influences the friction coefficient and wear rate of the friction materials and disk but not the friction stability.

Removal of Cu(II) ions by Alginate/Carbon Nanotube/Maghemite Composite Magnetic Beads

  • Jeon, Son-Yeo;Yun, Ju-Mi;Lee, Young-Seak;Kim, Hyung-Il
    • Carbon letters
    • /
    • v.11 no.2
    • /
    • pp.117-121
    • /
    • 2010
  • The composites of alginate, carbon nanotube, and iron(III) oxide were prepared for the removal of heavy metal in aqueous pollutant. Both alginate and carbon nanotube were used as an adsorbent material and iron oxide was introduced for the easy recovery after removal of heavy metal to eliminate the secondary pollution. The morphology of composites was investigated by FE-SEM showing the carbon nanotubes coated with alginate and the iron oxide dispersed in the alginate matrix. The ferromagnetic properties of composites were shown by including iron(III) oxide additive. The copper ion removal was investigated with ICP AES. The copper ion removal efficiency increased greatly over 60% by using alginate-carbon nanotube composites.

Study on the Wear Characteristics of the High Strength Ductile Irons (고강도 구상흑연구철의 내마모성에 미치는 기지조직의 영향에 관한 연구)

  • Kim, Bog-Suk;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.9 no.3
    • /
    • pp.237-246
    • /
    • 1989
  • This study has been carried out to investigate the difference of rolling life and rolling wear characteristics for various high strength ductile iron castings under unlubricative dry rolling condition by Amsler type wear test with 9.09% sliding ratio. The tensile strength of the castings have been obtained 80, 90 and $100kg.f/mm^2$ as cast-state with pearlitic, bainitic and martensitic matrix structures alloyed with Mo, Cu and Ni. It has been found that the amount of rolling wear is decreased when the tensile strength and hardnees of the castings are increased. The amount of rolling wear is increased, when the maximum compressive stress are increased. The maximum weight loss ratio of rolling wear of the castings are same at the 70000 numbers of revolution with out the maximum compressive stress.

  • PDF

Interfacial Characteristics of $Al-2024/Al_2O_{3p}$ Composite Fabricated by Rheo-compocasting (Rheo-compocasting법으로 제조된 알루미나 입자강화 Al합금 복합재료의 계면반응)

  • Hyun, Suhk-Jong;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.13 no.3
    • /
    • pp.285-294
    • /
    • 1993
  • Aluminum alloy 2024 matrix composites reinforced with $Al_2O_3$ particles, were prepared by rheo-compocasting, a process which consists of the incoporation distribution of reinforcement by stirring within a semi-solid alloy. The microstructures and characteristics of the interfaces have been studied using optical microscope and scanning electon microscope in 2024 aluminum alloy composites reinforced with $Al_2O_3$ particles. The main results are as follows: (1) $Al_2O_3$ particles were well distributed in composites by using rheo-compocasting. (2) As the addition of $Al_2O_3$ particle increases, the average dendrite numbers and the hardness were increased. (3) Interaction between $Al_2O_3$ particles and alloy 2024 resulted in the formation of Mg and Cu element rich region around the $Al_2O_3$ particles.

  • PDF

Effect of Alloying Elements on the Thermal Creep of Zirconium Alloys

  • Cheol Nam;Kim, Kyeong-Ho;Lee, Myung-Ho;Jeong, Yong-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.372-378
    • /
    • 2000
  • The effect of alloying elements on the creep resistance of Zr alloys was investigated using thermal creep tests that were performed as a part of advanced fuel cladding development. The creep tests were conducted at 40$0^{\circ}C$ and 150 MPa for 240 hr. A statistical model was derived from the relationship between the steady-state creep rate and the content of individual alloying elements. The creep strengthening effect decreased in the following sequence : Nb, Sn, Mn, Cr, Mo, Fe and Cu. The high creep resistance of Sn and the opposite effect of Fe on zirconium alloys seem to be associated with their lowering and enhancing, respectively, the self-diffusivity of the zirconium matrix.

  • PDF

Effect of Alloying Elements and Heat Treatment Temperatures on the Retained Austenite of Austempered Ductile iron (오스템퍼드구상흑연주철(球牀黑鉛鑄鐵)의 잔류(殘留)오스테나이트 조직(組織)에 미치는 합금원소(合金元素) 및 열처리온도(熱處理溫度)의 영향(影響)에 관한 연구(硏究))

  • Kim, Deog-Ryul;Cheon, Byung-Wook;Kim, Chang- Gue;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.13 no.1
    • /
    • pp.50-61
    • /
    • 1993
  • Retained austenite in matrix of austempered ductile iron has been well-known as a parameter in controlling mechanical properties, but investigation to obtain quantitative relationship with mechanical properties lack. Therefore, this study executed austempering treatment at various temperatures on ductile iron alloyed with Mo, Ni, Cu. In consequence, microstructure of retained austenite transformed coarse, and quantity increased according as austempering temperature increased. After heat-treatment, microstructure of specimen alloyed with Ni was fine, and toughness improved. At austempering temperature up to $400^{\circ}C$, carbide precipitation started in retained austenite. In consequence, afforded cause of hardness increase, a lot of increase did not arise for coarse structure.

  • PDF

Fabrication of Quasi-crystal Strengthened Aluminum Composites by Mechanical Milling Process (기계적 밀링 공정을 이용한 준결정 강화 알루미늄 복합재료의 제조)

  • Jang Woo Kil;Shin Kwang Seon
    • Journal of Powder Materials
    • /
    • v.12 no.3
    • /
    • pp.208-213
    • /
    • 2005
  • Aluminum matrix composites strengthened by the quasi-crystalline (QC) phase were developed in the present study. The icosahedral $Al_{65}Cu_{20}Fe_{15}$ phase was produced by gravity casting and subsequent heat treatment. The mechanical milling process was utilized in order to produce the Al/QC composite powders. The microstructures of the composite powders were examined by optical microscopy (OM) and scanning electron microscopy (SEM). The composite powders were subsequently canned, degassed and extruded in order to produce the bulk composite extrusions with various volume fractions of QC. The microstructure and mechanical properties of the extrusions were examined by OM, SEM, Vickers hardness tests and compression tests. It was found that the microstructures of the Al/QC composites were uniform and the mechanical properties could be significantly improved by the addition of the QC phase.