• Title/Summary/Keyword: Cu matrix

Search Result 443, Processing Time 0.193 seconds

A Study on Thermal Stability of Unidirectionally Solidified $Al-CuAl_2$ Eutectic Composite (일방향응고시킨 $Al-CuAl_2$공정복합재료의 열적안정성에 관한 연구)

  • Hong, Young-Hwan;Hong, Jong-Hwi
    • Journal of Korea Foundry Society
    • /
    • v.10 no.5
    • /
    • pp.399-407
    • /
    • 1990
  • The effect of thermal cycling and isothermal exposure on the high temperature microstructural stability of unidirectionally solidified $Al-CuAl_2$ eutectic composite has been studied. A coarsening procedures of lamellar eutectic structures were initiated at growth fault region because of diffusion through low angle boundary at this region. It was considered that thermally induced residual stresses produced by thermal cycling were high enough to increase the dislocation density in Al-rich matrix phase. However, it was also considered that dislocations generated by these high thermal stresses were annihilated at high temperature by stress relaxation. Consequently, the thermal cycling up to 1440 cycles between 20 and $520^{\circ}C$ did not affect the microstructural stability.

  • PDF

Aging of Melt Spun Ribbons in Cu-Based Shape Memory Alloys at High Temperature (Melt Spinning된 Cu-Al-Ni-X계 형상기억합금 리본의 고온시효)

  • 최영택
    • Journal of Powder Materials
    • /
    • v.2 no.3
    • /
    • pp.208-215
    • /
    • 1995
  • The aging effects on the characteristics of the melt spun Cu based shape memory alloys have been investigated by the microhardness test, X-ray diffraction, differential scanning calorimetry, scanning electron microscopy and transmission electron microscopy. After aged for specific times, hardness of the ribbons began to increase and shape memory capacity diminished. At the initial stage of aging the austenitic transformation temperatures increased gradually, but at last became nearly constant: That is, the aging deteriorated the thermal stability. The increase in hardness was due to the formation of the $\gamma_2$ precipitates. The loss in the shape memory capacity was due to the decrement of solute atoms in the matrix by the formation of the $\gamma_2$ precipitates. In this study, it was confirmed that Mn is an effective element for Improving the thermal stability.

  • PDF

Fabrication of Metallic Glass/metallic Glass Composites by Spark Plasma Sintering (방전플라즈마 소결법에 의한 비정질/비정질 복합재의 제조)

  • Lee, Jin-Kyu
    • Journal of Powder Materials
    • /
    • v.14 no.6
    • /
    • pp.405-409
    • /
    • 2007
  • The Cu-based bulk metallic glass (BMG) composites containing Zr-based metallic glass phase have been consolidated by spark plasma sintering using the mixture of Cu-based and Zr-based metallic glass powders in their overlapped supercooled liquid region. The Zr-based metallic glass phases are well distributed homogeneously in the Cu-based metallic glass matrix after consolidation process. The successful consolidation of BMG composites with dual amorphous phases was corresponding to the sound viscous flow of the two kinds of metallic glass powders in their overlapped supercooled liquid region.

Effect of Carbon-Nanotube Addition on Thermal Stability of Ti-based Metallic Glass Composites

  • Hsu, Chih-Feng;Lee, Pee-Yew
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1057-1058
    • /
    • 2006
  • The preparation of $Ti_{50}Cu_{28}Ni_{15}Sn_7$ metallic glass composite powders was accomplished by the mechanical alloying of a pure Ti, Cu, Ni, Sn and carbon nanotube (CNT) powder mixture after 8 h milling. In the ball-milled composites, the initial CNT particles were dissolved in the Ti-based alloy glassy matrix. The bulk metallic glass composite was successfully prepared by vacuum hot pressing the as-milled CNT/$Ti_{50}Cu_{28}Ni_{15}Sn_7$ metallic glass composite powders. A significant hardness increase with the CNT additions was observed for the consolidated composite compacts.

  • PDF

Preparation of YBCO films on Ag substrates by MOCVD process (MOCVD공정에 의한 Ag 기판 위에 YBCO 박막의 증착)

  • 김호진;주진호;전병혁;김찬중
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.79-82
    • /
    • 2003
  • We prepared YBCO coated conductor by direct deposition of YBCO on Ag substrate by a MOCVD method. The Ag substrate was only prepared by cold rolling. The XRD data of the as-rolled Ag tape showed the formation of dominant (420) oriented grains. Processing variables were the oxygen partial pressure (Po$_2$) and deposition temperature (T$_{d}$). It was found that the a-axis oriented films were grown at lower T$_{d}$ below 80$0^{\circ}C$, while the c-axis oriented films were grown about 80$0^{\circ}C$. The surface of the films consisted of a second inclusion phase dispersed in the YBCO matrix. The Cu-rich phase regions were observed at the YBCO/Ag interface probably due to the inter-diffusion of Ag and Cu. Cu.

  • PDF

A Fabrication of YBCO Single Crystal using Infiltration and Growth Method (용융침투성장법을 이용한 YBCO 단결정 제조)

  • Han, Sang-Chul;Jeong, Neyon-Ho;Han, Young-Hee;Sung, Tae-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.550-554
    • /
    • 2007
  • Large and single-grain Y-Ba-Cu-O(YBCO) bulk superconductors have been fabricated by using a seeded infiltration and growth method. $Y_2BaCuO_5$(Y211) precursor pellets and $YBa_2Cu_3O_x$(Y123) liquid source pellets were prepared using commercial powder and were processed by infiltration and growth method to achieve low pore and high trapped field property. The superconductor properties of the single crystal are measured and analyzed in relation with the density and size of the Y211 particle in the Y123 matrix. An optimum processing condition is suggested based on the analyzed results.

Effect of Carbon Addition and Sintering Temperature on Densification and Microstructural Evolution of Sinter-Hardening Alloys Steels

  • Verma, N.;Anand, S.;Upadhyaya, A.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.557-558
    • /
    • 2006
  • In all conventional sintered PM products, the pores present are of two types, primary and secondary. Primary pores forming during compaction and latter during sintering, due to penetration of formed liquid through the matrix grain boundary. Effect of carbon addition on diffusion of Cu in SH737-2Cu system was investigated. After compaction and transient liquid phase sintering at $1120^{\circ}C$ and $1180^{\circ}C$, samples were characterized for densification, showing rise in sintering density and reduction in swelling on carbon addition. Quantitative microstructural characterization (shape factor and pore size) revealed bimodal distribution for 0% carbon, more rounded pores for 0.9% carbon and higher sintering temperature, and pore coarsening at higher sintering temperature.

  • PDF

The effect of solid lubricant on the frictional characteristics of Cu base sintered friction material. (소결 마찰재의 마찰특성에 미치는 고체 윤활제의 영향)

  • 정진현;이범주;조정환;정동윤;권석진
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04b
    • /
    • pp.45-54
    • /
    • 1996
  • The effect of graphite on the frictional characteristics of Cu-based sintered friction materials was studied by pin-on-disk type wear test. A study has been carried out concerning the optimum concentration of graphite in sintered friction material to obtain the minimum wear rate and low friction coefficient . Friction coefficient and wear rate were increased as increasing the content of graphite in the matrix. In the study the optimum concentration of graphite was 19vol % to get the minimum wear rate and optimal frick'ion coefficient.

  • PDF

A surface chemical analysis strategy for the microstructural changes in a CuAgZrCr alloy cast under oxidation conditions

  • Ernesto G. Maffia;Mercedes Munoz;Pablo A. Fetsis;Carmen I. Cabello;Delia Gazzoli;Aldo A. Rubert
    • Advances in materials Research
    • /
    • v.13 no.2
    • /
    • pp.141-151
    • /
    • 2024
  • The aim of this work was to determine the behavior of alloy elements and compounds formed during solidification in the manufacturing process of the CuAgZrCr alloy under an oxidizing environment. Bulk and surface analysis techniques, such as Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), Raman and X-ray diffraction (XRD) were used to characterize the phases obtained in the solidification process. In order to focus the analysis on the on grain boundary interface, partial removal of the matrix phase by acid attack was performed. The compositional differences obtained by SEM-EDX, Raman and XPS on post-manufacturing materials allowed us to conclude that the composition of grain boundaries of the alloy is directly influenced by the oxidizing environment of alloy manufacturing.

Thermal Stability and Properties of Cu-$TiB_2$ Nanocomposites Prepared by Combustion Synthesis and Spark-plasma Sintering

  • Kwon, Dae-Hwan;Nguyen, Thuy Dang;Dudina, Dina;Kum, Jong-Won;Choi, Pyuck-Pa;Kim, Ji-Soon;Kwon, Young-Soon
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1203-1204
    • /
    • 2006
  • Cu-$TiB_2$ nanocomposite powders were synthesized by combining high-energy ball-milling of Cu-Ti-B mixtures and subsequent self-propagating high temperature synthesis (SHS). Cu-40wt.%$TiB_2$ powders were produced by SHS reaction and ball-milled. The milled SHS powder was mixed with Cu powders by ball milling to produce Cu-2.5wt.%$TiB_2$ composites. $TiB_2$ particles less than 250nm were formed in the copper matrix after SHS-reaction. The releative density, electrical conductivity and hardness of specimens sintered at $650-750^{\circ}C$ were nearly 98%, 83%IACS and 71HRB, respectively. After heat treatment at 850 to $950^{\circ}C$ for 2 hours under Ar atmosphere, hardness was descedned by 15%. Our Cu-$TiB_2$ composite showed good thermal stability at eleveated temperature.

  • PDF