• Title/Summary/Keyword: Cu composites

Search Result 225, Processing Time 0.027 seconds

Microstructure Control of Cu-Ni-Zr-Ti Metallic Glass Composites by Multi-Pass Extrusion Process (다중압출공정을 이용한 Cu-Ni-Zr-Ti 비정질 복합재의 미세조직제어)

  • Kim, Taek-Soo;Lee, Jin-Kyu
    • Transactions of Materials Processing
    • /
    • v.16 no.5 s.95
    • /
    • pp.386-390
    • /
    • 2007
  • In order to, simultaneously, synthesize and control the size of microstructure of amorphous/crystalline composites, a repeated extrusion process was performed using the gas atomized $Cu_{54}Ni_6Zr_{22}Ti_{18}$ metallic glass powders and the crystalline brasses. The size of microstructure in the resultant composites was varied depending on the pass of extrusion as well as on the area reduction ratio. The microstructure could be estimated using an equation of $r_n=r_{n-1}/R^{1/2}$, where R is reduction ratio and $r_n$ is the resultant radius of the extruded bar after n pass. Theory of microstructural refinement as well as the relationship between the resultant microstructures and mechanical properties was discussed.

The Study on the Unidirectionally Solidified $Al-CuAl_2$ Eutectic Composites;Effect of Vibration on the Lamellar Spacing and Fault Density (일방향 응고한 $Al-CuAl_2$ 공정복합재료에 관한 연구;층상간격과 결함밀도에 미치는 응고조건과 진동의 영향)

  • Lee, Kil-Hong;Lee, Hyun-Kyu
    • Journal of Korea Foundry Society
    • /
    • v.17 no.2
    • /
    • pp.188-194
    • /
    • 1997
  • The effects of solidification condition and vibration on structure refinement were investigated for unidirectionally solidified $Al-CuAl_2$ eutectic composites. Eutectic composites were unidirectionally solidified under vibration with different growth rates (R) and thermal gradient(G). The lamellar structure was varied according to growth condition (G/R ratio). For the structure refinement the effect of G/R was found out to be greater than that of vibration. The interlamellar spacing(${\lambda}$) in this materials was varied with the growth rates(R) with "${\lambda}^2R$=Constant" relationship.

  • PDF

Fabrication of Metallic Glass/metallic Glass Composites by Spark Plasma Sintering (방전플라즈마 소결법에 의한 비정질/비정질 복합재의 제조)

  • Lee, Jin-Kyu
    • Journal of Powder Materials
    • /
    • v.14 no.6
    • /
    • pp.405-409
    • /
    • 2007
  • The Cu-based bulk metallic glass (BMG) composites containing Zr-based metallic glass phase have been consolidated by spark plasma sintering using the mixture of Cu-based and Zr-based metallic glass powders in their overlapped supercooled liquid region. The Zr-based metallic glass phases are well distributed homogeneously in the Cu-based metallic glass matrix after consolidation process. The successful consolidation of BMG composites with dual amorphous phases was corresponding to the sound viscous flow of the two kinds of metallic glass powders in their overlapped supercooled liquid region.

Preparation and Mechanical Properties of $Al_2O_3$/5vo1%Cu Nanocomposites ($Al_2O_3$/5vo1%Cu 나노복합재료의 제조 및 기계적특성)

  • ;;Koichi Niihara
    • Journal of Powder Materials
    • /
    • v.7 no.4
    • /
    • pp.212-217
    • /
    • 2000
  • An optimum route to fabricate the $Al_2O_3/Cu$ nanocomposites with sound microstructure and improved mechanical properties was investigated. Microstructural investigations for the composites prepared using $Al_2O_3/Cu$-nitrate showed that fine Cu particles with average size of 150 nm were homogeneously distributed within the $Al_2O_3$ matrix grains and at the grain boundaries. Fracture strength of 953 MPa and toughness of 4.8 Mpa(equation omitted)m were measured for the composite. The strengthening and toughening of the composites are explained by the refinement of the microstructure and the crack bridging/deflection, respectively.

  • PDF

Comparison of Microstructure and Electrical Conductivity of Ni/YSZ and Cu/YSZ Cathode for High Temperature Electrolysis (고온수전해용 Ni/YSZ와 Cu/YSZ 환원극의 미세구조 및 전기전도도 비교)

  • Kim, Jong-Min;Shin, Seock-Jae;Woo, Sang-Kook;Kang, Kae-Myung;Hong, Hyun-Seon
    • Korean Journal of Materials Research
    • /
    • v.18 no.7
    • /
    • pp.384-388
    • /
    • 2008
  • Hydrogen production via high high-temperature steam electrolysis consumes less electrical energy than compared to conventional low low-temperature water electrolysis, mainly due to the improved thermodynamics and kinetics at elevated temperaturetemperatures. The elementalElemental powders of Cu, Ni, and YSZ are were used to synthesize high high-temperature electrolysis cathodecathodes, of Ni/YSZ and Cu/YSZ composites, by mechanical alloying. The metallic particles of the composites were uniformly covered with finer YSZ particles. Sub-micron sized pores are were homogeneously dispersed in the Ni/YSZ and Cu/YSZ composites. In this study, The cathode materials were synthesized and their Characterizations properties were evaluated in this study: It was found that the better electric conductivity of the Cu/YSZ composite was measured improved compared tothan that of the Ni/YSZ composite. Slight A slight increase in the resistance can be produced for in a Cu/YSZ cathode by oxidation, but it this is compensated offset for by a favorable thermal expansion coefficient. Therefore, Cu/YSZ cermet can be adequately used as a suitable cathode material of in high high-temperature electrolysis.

Effects of Natural Convection on Macrosegregation of Directionally Solidified Off-Eutectic Composites (공정복합재료의 일방향응고시 용질편석에 미치는 자연대류의 영향)

  • Kim, Gi-Bae;Yun, Ui-Park
    • Korean Journal of Materials Research
    • /
    • v.5 no.1
    • /
    • pp.123-131
    • /
    • 1995
  • Natural convection in bridgman growth and it's effect on macrosegregation in unidirectionally solidified off-eutectic alloys were examined in this study. AlCu off-eutectic alloys(27.5wt% ~35. 6wt% ) were solidified upward or downward for producing a different natural convection and then Cu concentrations of off-eutectic composites were measured as a function of solidified fraction. Solutal and temperature distributions ahead of the solid/liquid interface were measured on quenched specimen. When hypo-utectic AlCu alloys are directionally solidified with downward growth, considerable macrosegregation occurs due to flow induced by thermal and solutal convection in melt. Soultal convection affects the macrosegregation of hyper-eutectic AlCu alloys more severely than thermal convection. Solute composition at solid/liquid interface of offkutectic composites was eutectic and also temperature was near eutectic point without large undercooling.

  • PDF

High Strength Nanostructured Metastable Alloys

  • Eckert, Jurgen;Bartusch, Birgit;Schurack, Frank;He, Guo;Schultz, Ludwig
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.394-408
    • /
    • 2002
  • Nanostructured high strength metastable Al-, Mg- and Ti-based alloys containing different amorphous, quasicrystalline and nanocrystalline phases are synthesized by non-equilibrium processing techniques. Such alloys can be prepared by quenching from the melt or by powder metallurgy techniques. This paper focuses on one hand on mechanically alloyed and ball milled powders containing different volume fractions of amorphous or nano-(quasi)crystalline phases, consolidated bulk specimens and, on the other hand. on cast specimens containing different constituent phases with different length-scale. As one example. $Mg_{55}Y_{15}Cu_{30}$- based metallic glass matrix composites are produced by mechanical alloying of elemental powder mixtures containing up to 30 vol.% $Y_2O_3$ particles. The comparison with the particle-free metallic glass reveals that the nanosized second phase oxide particles do not significantly affect the glass-forming ability upon mechanical alloying despite some limited particle dissolution. A supercooled liquid region with an extension of about 50 K can be maintained in the presence of the oxides. The distinct viscosity decrease in the supercooled liquid regime allows to consolidate the powders into bulk samples by uniaxial hot pressing. The $Y_2O_3$ additions increase the mechanical strength of the composites compared to the $Mg_{55}Y_{15}Cu_{30}$ metallic glass. The second example deals with Al-Mn-Ce and Al-Cu-Fe composites with quasicrystalline particles as reinforcements, which are prepared by quenching from the melt and by powder metallurgy. $Al_{98-x}Mn_xCe_2$ (x =5,6,7) melt-spun ribbons containing a major quasicrystalline phase coexisting with an Al-matrix on a nanometer scale are pulverized by ball milling. The powders are consolidated by hot extrusion. Grain growth during consolidation causes the formation of a micrometer-scale microstructure. Mechanical alloying of $Al_{63}Cu_{25}Fe_{12}$ leads to single-phase quasicrystalline powders. which are blended with different volume fractions of pure Al-powder and hot extruded forming $Al_{100-x}$$(Al_{0.63}Cu_{0.25}Fe_{0.12})_x$ (x = 40,50,60,80) micrometer-scale composites. Compression test data reveal a high yield strength of ${\sigma}_y{\geq}$700 MPa and a ductility of ${\varepsilon}_{pl}{\geq}$5% for than the Al-Mn-Ce bulk samples. The strength level of the Al-Cu-Fe alloys is ${\sigma}_y{\leq}$550 MPa significantly lower. By the addition of different amounts of aluminum, the mechanical properties can be tuned to a wide range. Finally, a bulk metallic glass-forming Ti-Cu-Ni-Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hcp Ti solid solution precipitates and a few $Ti_3Sn,\;{\beta}$-(Cu, Sn) grains dispersed in a glassy matrix. The composite micro- structure can avoid the development of the highly localized shear bands typical for the room temperature defor-mation of monolithic glasses. Instead, widely developed shear bands with evident protuberance are observed. resulting in significant yielding and homogeneous plastic deformation over the entire sample.

Fabrication of Two-Layered $Al-B_4C$ Composites by Conventional Hot Pressing Uuder Nitrogen Atmosphere and Their Characterization

  • Bedir Fevzi
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.1002-1011
    • /
    • 2006
  • In this study, we describe the conventional hot pressing (CHP) of layered $Al-B_4C$ composites and their characterization. The matrix alloy Al-5 wt.%Cu was prepared from elemental powder mixtures. The metal and B4C powders were mixed to produce either $Al-Cu-10vol.%B_4C$ or $Al-Cu-30vol.%B_4C$ combinations. Then, these powder mixtures were stacked as layers in the hot pressing die to form a two-layered composite. Hot pressing was carried out under nitrogen atmosphere to produce $30\times40\times5mm$ specimens. Microstructural features and age hardening characteristics of composites were determined by specimens cut longitudinally. The flexural strength of both layered composites and their monolithic counterparts were investigated via three point bending tests. In the case of layered specimens of both $10vol.%B_4C$ and $30vol.%B_4C$ containing layers were loaded for three-point test. The results show that a homogeneous distribution of $B_4C$ particles in the matrix alloy which is free of pores, can be obtained by CHP method. The ageing behavior of the composites was found to be influenced by the reinforced materials, i.e. higher hardness values were reached in 8 hrs for the composites than that for the matrix alloy. Flexural strength test showed that two-layered composites exhibited improved damage tolerance depending on layer arrangement. Microstructural investigation of the fracture surfaces of the bending specimens was performed by means of scanning electron microscope (SEM). While layer with lower reinforcement content exhibited large plastic deformation under loading, the other with higher reinforcement content exhibited less plastic deformation.

Angle-resolved Photoemission Study of Epitaxial Graphene on Cu(111)

  • Lee, Wang-Geun;Jeon, Cheol-Ho;Hwang, Han-Na;Kim, Kwang-S.;Park, Chong-Yun;Hwang, Chan-Cuk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.126-126
    • /
    • 2012
  • Copper is considered to be the most promising substrate, especially Cu(111), for the growth of high quality monolayer graphene. Since interactions between graphene and Cu substrates will influence on the orientation, quality, and electrical properties of synthesized graphene, we experimentally determine a weak interfacial interaction between Cu(111) substrate and graphene using angle-resolved photoemission spectroscopy (ARPES). The measurement was conducted from the initial stage to the formation of a graphene monolayer. Graphene growth was initiated along the Cu(111) lattice, and two rotated graphene domains were grown, where no significant differences were observed in the band structure depending on different orientations. The interaction, including electron transfer from the Cu(111) to graphene, was limited between the Shockley state of the Cu(111) surface and the ${\pi}$ bands of graphene. These results provide direct information on the growth behavior and interactions between the Cu(111) and graphene.

  • PDF

Microstructure and Mechanical Properties of 3vol%CNT Reinforced Cu Matrix Composite Fabricated by a Powder in Sheath Rolling Method (분말시스압연법에 의해 제조된 3vol%CNT 강화 Cu기 복합재료의 미세조직 및 기계적 성질)

  • Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.30 no.3
    • /
    • pp.149-154
    • /
    • 2020
  • A powder-in-sheath rolling method is applied to the fabrication of a carbon nano tube (CNT) reinforced copper composite. A copper tube with outer diameter of 30 mm and wall thickness of 2 mm is used as sheath material. A mixture of pure copper powder and CNTs with a volume content of 3 % is filled in a tube by tap filling and then processed to an 93.3 % reduction using multi-pass rolling after heating for 0.5 h at 400 ℃. The specimen is then sintered for 1h at 500 ℃. The relative density of the 3 vol%CNT/Cu composite fabricated using powder in sheath rolling is 98 %, while that of the Cu powder compact is 99 %. The microstructure is somewhat heterogeneous in width direction in the composite, but is relatively homogeneous in the Cu powder compact. The hardness distribution is also ununiform in the width direction for the composite. The average hardness of the composites is higher by 8Hv than that of Cu powder compact. The tensile strength of the composite is 280 MPa, which is 20 MPa higher than that of the Cu powder compact. It is concluded that the powder in sheath rolling method is an effective process for fabrication of sound CNT reinforced Cu matrix composites.