• Title/Summary/Keyword: Cu catalyst

Search Result 356, Processing Time 0.03 seconds

A Study on Cu Based Catalysts for Water Gas Shift Reaction to Produce Hydrogen from Waste-Derived Synthesis Gas (폐기물 가스화 합성가스로부터 수소 생산을 위한 수성가스전이 반응용 Cu 기반 촉매 연구)

  • Na, Hyun-Suk;Jeong, Dae-Woon;Jang, Won-Jun;Lee, Yeol-Lim;Roh, Hyun-Seog
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.3
    • /
    • pp.227-233
    • /
    • 2014
  • Simulated waste-derived synthesis gas has been tested for hydrogen production through water-gas shift (WGS) reaction over supported Cu catalysts prepared by co-precipitation method. $CeO_2$, $ZrO_2$, MgO, and $Al_2O_3$ were employed as supports for WGS reaction in this study. $Cu-CeO_2$ catalyst exhibited excellent catalytic activity as well as 100% $CO_2$ selectivity for WGS in severe conditions ($GHSV=40,206h^{-1}$ and CO concentration = 38.0%). In addition, $Cu-CeO_2$ catalyst showed stable CO conversion for 20h without detectable catalyst deactivation. The high activity and stability of $Cu-CeO_2$ catalyst are correlated to its easier reducibility, high oxygen mobility/storage capacity of $CeO_2$.

Synthesis of Methanol from Carbon Dioxide (I). Study on Cu / ZnO Catalyst System (이산화탄소에 의한 메탄올 합성 (제 1 보). Cu / ZnO 촉매계 연구)

  • Sung Yun Cho;Ki Won Jun;Dae Chul Park;Kyu Wan Lee
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.558-567
    • /
    • 1989
  • The synthesis of methanol from carbon dioxide and hydrogen was studied for various compositions of Cu/ZnO catalyst system. Effect of the composition ratio of CuO and ZnO on the catalytic activity in the above reaction and the relationship between the activity and the characteristics of the catalysts were explained from the result of surface area measurements, SEM, XRD, and XPS. The major products of the reaction were methanol and carbon monoxide. The selectivity to methanol increased with increase of the copper oxide content in the catalyst up to CuO: ZnO = 30:70 weight ratio, and decreased rapidly when the content is above 70%. SEM and BET measurements, indicate that this point corresponds to the increasing point of the catalyst crystallite size and the decreasing point of the surface area. As to the Cu/Cu + Zn atomic ratio, the surface concentration of copper measured by XPS decreased remarkably when the copper oxide content in catalyst was higher than 50%. All the unreduced catalysts had almost same binding energy of Cu(2P3) level, but the binding energy for $Cu(2P^3)$ level of reduced catalysts was lowered than that of calcined catalysts. The surface copper species which was in the maximum amount when the CuO:ZnO composition in the catalyst was 30:70, existed as zero valent copper. This result agreed with the experimental result that the highest rate of methanol formation was observed when the CuO content in the catalyst was 30%. It was postulated that these reduced catalysts performed with a relatively strong basicity because the formation rate of acetone was higher than that of propylene in isopropanol decomposition as measured in a pulse type reactor.

  • PDF

Selective Catalytic Reduction of NOx with Ammonia over Cu and Fe Promoted Zeolite Catalysts (구리 제올라이트와 철 제올라이트 촉매에 의한 질소산화물의 암모니아 선택적 촉매환원반응 특성)

  • Ha, Ho-Jung;Hong, Ju-Hwan;Choi, Joon-Hwan;Han, Jong-Dae
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.287-294
    • /
    • 2013
  • The $NH_3$-selective catalytic reduction (SCR) reaction of NO with excess of oxygen were systematically investigated over Cu-zeolite and Fe-zeolite catalysts. Cu-zeolite and Fe-zeolite catatysts to adapt the SCR technology for mobile diesel engines were prepared by liquid ion exchange and incipient wetness impregnation of $NH_4$-BEA and $NH_4$-ZSM-5 zeolites. The catalysts were characterized by BET, XRD, FE-TEM (field emission transmission electron microscopy) and SEM/EDS. The SCR examinations performed under stationary conditions showed that the Cu-exchanged BEA catalyst revealed pronounced performance at low temperatures of $200{\sim}250^{\circ}C$. With respect to the Fe-zeolite catalyst, the Cu-zeolite catalyst showed a higher activity in the SCR reaction at low temperatures below $250^{\circ}C$. BEA zeolite based catalyst exhibited good activity in comparison with ZSM-5 zeolite based catalyst at low temperatures below $250^{\circ}C$.

Effects of Mg Addition to Cu/Al2O3 Catalyst for Low-Temperature Water Gas Shift (LT-WGS) Reaction

  • Zakia Akter Sonia;Ji Hye Park;Wathone Oo;Kwang Bok Yi
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.39-45
    • /
    • 2023
  • To investigate the effects of Mg addition at different aging times and temperatures, Cu/MgO/Al2O3 catalysts were synthesized for the low-temperature water gas shift (LT-WGS) reaction. The co-precipitation method was employed to prepare the catalysts with a fixed Cu amount of 30 mol% and varied amounts of Mg/Al. Synthesized catalysts were characterized using XRD, BET, and H2-TPR analysis. Among the prepared catalysts, the highest CO conversion was achieved by the Cu/MgO/Al2O3 catalyst (30/40/30 mol%) with a 60 ℃ aging temperature and a 24 h aging time under a CO2-rich feed gas. Due to it having the lowest reduction temperature and a good dispersion of CuO, the catalyst exhibited around 65% CO conversion with a gas hourly space velocity (GHSV) of 14,089 h-1 at 300 ℃. However, it has been noted that aging temperatures greater or less than 60 ℃ and aging times longer than 24 h had an adverse impact, resulting in a lower surface area and a higher reduction temperature bulk-CuO phase, leading to lower catalytic activity. The main findings of this study confirmed that one of the main factors determining catalytic activity is the ease of reducibility in the absence of bulk-like CuO species. Finally, the long-term test revealed that the catalytic activity and stability remained constant under a high concentration of CO2 in the feed gas for 19 h with an average CO conversion of 61.83%.

Atom Transfer Radical Polymerization of Hexadecyl Acrylate Using CuSCN as the Catalyst

  • Xu, Wenjian;Zhu, Xiulin;Cheng, Zhenping;Chen, Jianying;Lu, Jianmei
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.32-37
    • /
    • 2004
  • The atom transfer radical polymerization (ATRP) of hexadecyl acrylate (HDA) was carried out in Ν,Ν-dimethylformamide (DMF) in the presence of CuSCN/Ν,Ν,Ν′,Ν"Ν"-pentamethyldiethylenetriamine (PMDETA). The results indicate that the polymerization is well-controlled: a linear increase of molecular weights occurs with respect to conversion and the polydispersities are relatively low. In particular, the use of CuSCN as the catalyst resulted in faster polymerization rates for hexadecyl acrylate than did those using either CuBr or CuCl; the polydis-persity, however, was larger than those obtained in the cases when CuBr and CuCl were used. In addition, we report the thermodynamic data and activation parameters for the solution ATRP of hexadecyl acrylate.

A Study on Cu-based Catalysts for Oxygen Removal in Nitrogen Purification System (질소 정제 시스템의 산소 제거용 구리계 촉매 연구)

  • Oh, Seung Kyo;Seong, Minjun;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.9-16
    • /
    • 2021
  • Since the active matrix organic light-emitting diode (AMOLED) encapsulation process is very vulnerable to moisture and oxygen, high-purity nitrogen with minimal moisture and oxygen must be used. In this study, a copper-based catalyst used to remove oxygen from nitrogen in the AMOLED encapsulation process was optimized. Two-component and three-component catalysts composed of CuO, Al2O3, or ZnO were prepared through a co-precipitation method. The prepared catalysts were characterized by using BET, XRD, TPR, and XRF analysis. In order to verify the oxygen removal performance of the catalyst, several catalytic reactions were conducted in a fixed bed reactor, and the corresponding oxygen contents were measured through an oxygen analyzer. In addition, reusability of the catalysts was proven through repetitive regeneration. The properties and oxygen removal capacity of the catalysts prepared with CuO and Al2O3 ratios of 6 : 4, 7 : 3, and 8 : 2 were compared. The number of active sites of the catalyst with a ratio of CuO and Al2O3 of 8 : 2 was the highest among the 2-component catalysts. Moreover, the reducibility of the catalyst with a ratio of CuO and Al2O3 of 8 : 2 was the best as it had the highest CuO dispersion. As a result, the oxygen removal ability of the catalyst with a ratio of CuO and Al2O3 of 8 : 2 was the best among the 2-component catalysts. The best oxygen removal capacity was obtained when 2wt% of ZnO was added to the sub-optimized catalyst (i.e., CuO : Al2O3 = 8 : 2) probably due to its outstanding reducibility. Furthermore, the optimized catalyst kept its performance during a couple of regeneration tests.

Preparation and Properties of Disc Type CuO Catalyst Impregnated Ceramic Filters (디스크형 산화구리 촉매담지 세라믹필터의 제조와 물성)

  • Hong Min-Sun;Moon Su-Ho;Lee Jae-Chun;Lee Dong-Sub;Lim Woo Taik
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.2
    • /
    • pp.185-193
    • /
    • 2004
  • A catalyst with CuO ceramic filter for simultaneous treatment of dust and HAP was prepared and characterized. Catalytic ceramic filter can not only potentially achieve the substantial savings in energy but provide with effective optimization and integration of process for simultaneous removal of SO$_2$, NO$_{x}$ and particulates from flue gases. Catalytic ceramic filters remove simultaneously particulates on exterior surface of filters and reduce NO to $N_2$ and $H_2O$ by SCR (Selective Catalytic Reduction) process. Preparation of catalyst impregnated ceramic filter with disk shape (Ψ 50) follow the processing of alumino-silicate ceramic filter, support impregnation and catalyst impregnation (copper oxide). Preparation routes of alumino-silicate catalyst carrier suitable for production of catalytic filters practically were studied and developed using the sol-gel and colloidal processing, homogeneous precipitation and impregnation method. Characterization of the catalyst, catalyst carrier catalytic filter materials have been performed the using various techniques such as BET, XRD, TGA, SEM. Combination of the sol-gel and colloidal processing and impregnation method is recommended to prepare catalyst carriers economically for catalytic filter applications.s.

One Pot Four-Component Synthesis of Novel Substituted 2-Phenyl-4(3H) Quinazolinones Using Recyclable Nanocrystalline CuMnO3 Catalyst

  • Borhade, A.V.;Tope, D.R.;Gare, G D.;Dabhade, G.B.
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.4
    • /
    • pp.157-162
    • /
    • 2017
  • In the present study, nanocrystalline mixed metal oxide, $CuMnO_3$ catalyst have been synthesized by mechanochemical method with green chemistry approach. The synthesized catalyst was characterized by analytical techniques including FTIR, XRD, SEM, TEM and BET surface area. The synthesized catalyst shows high surface area is $121.06m^2/g$ with particle size 18 nm. The one pot four component synthesis of substituted 2-phenyl-4(3H) quinazolinone from the reaction of anthranilic acid, benzoyl chloride, hydrazine hydrate and substituted benzaldehyde in presence of $CuMnO_3$ nanocatalyst has been carried out. It affords the corresponding products with high yield (76-95%) in very short reaction time. All the obtained products were characterized with $^1HNMR$, $^{13}CNMR$, FTIR and EIMS.

Characterization of Nanostructure and Electronic Properties of Catalytically Grown Carbon Nanofiber (촉매법으로 제조한 나노탄소섬유의 미세구조 및 전기적 특성 제어 연구)

  • 김명수;우원준;송희석;임연수;이재춘
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.4
    • /
    • pp.345-353
    • /
    • 2000
  • Carbon nanofibers were prepared from the decomposition of various carbon-containing gases over pure Ni, pure Fe and their alloys with Cu. They yields, properties, and structure of carbon nanofibers obtained from the various reaction conditions were analyzed. Type of reacting gas, reaction temperature and catalyst composition were changed as the reaction variable. With Ni-Cu catalysts, the maximum yields of carbon nanofibers were obtained at temperatures between 550 and 650$^{\circ}C$ according to the reacting gas mixtures of C2H2-H2, C2H4-H2 and C3H8-H2, and the surface areas of the carbon nanofibers produced were 20∼350㎡/g. In the case of CO-H2 mixture, the rapid deposition of carbon nanofibers occurred with Fe-Cu catalyst and the maximum yield were obtained around 550$^{\circ}C$ with the range of surface areas of 140∼170㎡/g. The electrical resistivity of carbon nanofiber regarded as the key property of filler for the application of electromagnetic interference shielding was very sensitive to the type of reactant gas and the catalyst composition ranging 0.07∼1.5Ωcm at a pressure of 10000 psi, and the resistivity of carbon nanofibers produced over pure nickel catalyst were lower than those over alloy catalysts. SEM observation showed that the carbon nanofibers produced had the diameters ranging 20∼300 nm and the straight structure of carbon nanofibers changed into the twisted or helical conformation by the variation of reacting gas and catalyst composition.

  • PDF

CO oxidation Reaction over copper metal oxide catalysts (구리복합산화물 촉매상에서 일산화탄소의 산화반응)

  • Lee, Hak Beum;Koh, Hyoung Lim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.129-135
    • /
    • 2016
  • CO oxidation was performed with Cu-Mn and Cu-Zn co-precipitated catalysts as differential precipitant, metal ratio and calcination temperature. The effects of differential metal mole ratio and calcination temperature in mixed metal oxide catalyst were investigated with CO oxidation reaction. Physiochemical properties were studied by XRD, $N_2$ sorption and SEM. 2Cu-1Mn with $Na_2CO_3$ catalyst calcined at $270^{\circ}C$ has a large surface area $43m^2/g$ and the best activity for CO oxidation. $Cu_{0.5}Mn_{2.5}O_4$ in XRD peak shows the lower activity than others. The catalytic activity over the catalyst calcined $270^{\circ}C$ displayed the highest conversion, and it was better activity comparing with Pt catalysts CO conversion.