• Title/Summary/Keyword: Cu alloys

Search Result 663, Processing Time 0.029 seconds

The Oxidation Study of Lead-Free Solder Alloys Using Electrochemical Reduction Analysis (전기화학적 환원 분석을 통한 무연 솔더 합금의 산화에 대한 연구)

  • Cho Sungil;Yu Jin;Kang Sung K.;Shih Da-Yuan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.1 s.34
    • /
    • pp.35-40
    • /
    • 2005
  • The oxidation of pure Sn and Sn-0.7Cu, Sn-3.5Ag, Sn-lZn, and Sn-9Zn alloys at $150^{\circ}C$ was investigated. Both the chemical nature and the amount of oxides were characterized using electrochemical reduction analysis by measuring the electrolytic reduction potential and total transferred electrical charges. X-ray photoelectron spectroscopy (XPS) was also conducted to support the results of reduction analysis. The effect of Cu, Ag and Zn addition on surface oxidation of Sn alloys is reported. For Sn, Sn-0.7Cu and Sn-3.5Ag, SnO grew first and then the mixture of SnO and $SnO_2$ was found. $SnO_2$ grew predominantly for a long-time aging. For Zn containing Sn alloys, both ZnO and $SnO_2$ were formed. Zn promotes the formation of $SnO_2$. Sn oxide growth rate of Pb-free solder alloys was also discussed in terms of alloying elements.

  • PDF

Magnetic Properties of ${\alpha}-Fe$ Based Nd-Fe-B Melt-Spun Alloys (${\alpha}-Fe$ 기 Nd-Fe-B 급속응고합금의 자기특성)

  • 조용수;김윤배;박우식;김희태;김창석;김택기
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.2
    • /
    • pp.122-125
    • /
    • 1994
  • The magnetic properties of Nd-Fe-B alloys of containing 4 at.% Nd have been studied for the development of new type rare-earth magnets. The amorphous phase of a melt-spun $Nd_{4}Fe_{85.5}B_{10.5}$ alloy is transformed into the phases which have a small amount of $Nd_{2}Fe_{14}B_{1}$ in ${\alpha}-Fe$ matrix by annealing above their crystallization temperature. The addition of Mo, Nb, V or Cu to $Nd_{4}Fe_{85.5}B_{10.5}$ alloy results in the reduction of grain size and the sub¬sequent improvement of the coercivity. The coercivity of $Nd_{4}Fe_{82}B_{10}M_{3}Cu_{1}$(M = Mo, Nb, V) alloys increases in the order of M = V < Nb < Mo and shows the highest value of 2.7 kOe when M = Mo. On the other hand, the rem¬anence of these alloys shows the opposite trend and the rn>st improved value of 1.35 T is observed when M = V.

  • PDF

The Magnetic Characteristics and Microstructure of Mn-A1 System Alloys(1st Report) -Focused on the Mn-A1 Alloys- (Mn-Al계 합금의 열처리에 따른 미세조직 변화와 지기적 특성(제1보) -Mn-Al-Cu 합금을 중심으로-)

  • Pang, Man-Gyu;Yang, Hyun-Soo;Kwak, Chang-Sup
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.4
    • /
    • pp.48-58
    • /
    • 1988
  • This study was undertaken to observe the formation behavior of ferro- magnetic phase in Mn-Al-Cu Alloys. The alloy selected for this investigation was 70% Mn-29% Al-1% Cu. This pre-allyed pig was prepared to the cylinderical castings using an Induction furnace after homogenizing at $1100^{\circ}C$ for 2hr, the specimens were cooled by cooling methods. Subwequent isothermal heat treatments were followed at $550^{\circ}C$ for various periods of time at predetermined(1-1000min). The formation behavior of ferromagnetic phase was investigated by measurements of magnetic properties of the specimens at each stage of heat treatment, and optical microscopic esamination and X-Ray diffraction analyses were also employed. By this basic experimental results, the conclusions are as follows 1) In order to obtain much amount of ferromagnetic phase, the optimum average cooling rate was about 7.35-$16.4^{\circ}C$/sec($1100^{\circ}C$-$600^{\circ}C$). 2) We verified the decomposition of {\tau} phase to {\beta} -Mn and {\gamma} , as the specimens were homogenized at $1100^{\circ}C$ for 12hr, then heat-treased at $550^{\circ}C$ for 1-1000min. 3) A condition of optimum heat treatments in Mn-Al-Cu permanent mag-netic alloys showed that after homogenizing at $1100^{\circ}C$ for 2hr, the speciments were cooled in air or furnace(A) and subsequent heat treatments at $550^{\circ}C$ for 1-30min. The maximum magnetic properties were measured as follows: Air cooling; Br=1200(Gause), bHc=100(oe), (BH)max=0.07(MGOe) Furnace cooling(A);Br=950(Gauss), bhe=80(Oe), (BH)max=0.05(MGOe)

  • PDF

A Study on the Influence of Ni and Si Content on the Characteristics of Cu-Ni-Si-P Alloy for Connector Materials (Connector용 Cu-Ni-Si-P합금의 특성에 미치는 Ni및 Si의 영향에 관한연구)

  • No, Han-Sin;Lee, Byeong-U;Lee, Gwang-Hak;Kim, Hong-Sik
    • Korean Journal of Materials Research
    • /
    • v.4 no.8
    • /
    • pp.877-887
    • /
    • 1994
  • Cu-Ni-Si-P alloys have been studied in order to develop connector material which has a favorable combination of strength, electrical conductivity, elastic limit, thermal softening resistence and bend formability. Three kinds of trial alloys with various nickel and silicon content were melted and cast, hot rolled at about $900^{\circ}C$ and cold rolled. Mechanical properties and electrical conductivities of these alloys annealed at $450^{\circ}C$, $500^{\circ}C$ and $550^{\circ}C$ were investigated. An alloy with the composition of Cu-2.7%Ni-0.53%Si-O.O29%P, which shows a favorable combination of high strength and high electrical conductivity, has been developed. Various characteristics of the alloy 1 connector material were evaluated and compared with phospher bronze(C521OR-H) and brass(C26OOR-EH) connector material.

  • PDF

Behavior of Vibration Fracture for Sn-Ag-Cu-X Solders by Soldering (Sn-Ag-Cu-X 무연솔더로 솔더링 된 접합부의 진동파괴 거동)

  • Jin, Sang-Hun;Kang, Nam-Hyun;Cho, Kyung-Mox;Lee, Chang-Woo;Hong, Won-Sik
    • Journal of Welding and Joining
    • /
    • v.30 no.2
    • /
    • pp.65-69
    • /
    • 2012
  • Environmental and health concerns over the lead have led to investigation of the alternative Pb-free solders to replace commonly used Pb-Sn solders in microelectronic packaging application. The leading candidates for lead-free solder alloys are presently the near eutectic Sn-Ag-Cu alloys. Therefore, extensive studies on reliability related with the composition have been reported. However, the insufficient drop property of the near eutectic Sn-Ag-Cu alloys has demanded solder compositions of low Ag content. In addition, the solder interconnections in automobile applications like a smart box require significantly improved vibration resistance. Therefore, this study investigated the effect of alloying elements (Ag, Bi, In) on the vibration fatigue strength. The vibration fatigue was conducted in 10~1000Hz frequency and 20Grms. The interface of the as-soldered cross section close to the Cu pad indicated the intermetallic compound ($Cu_6Sn_5$) regardless of solder composition. The type and thickness of IMC was not significantly changed after the vibration test. It indicates that no thermal activities occurred significantly during vibration. Furthermore, as a function of alloying composition, the vibration crack path was investigated with a focus on the IMCs. Vibration crack was initiated from the fillet surface of the heel for QFP parts and from the plating layer of chip parts. Regardless of the solder composition, the crack during a vibration test was propagated as same as that during a thermal fatigue test.

Magnetic Properties of Ultrafine grained Fe-Al-Nb-B-(Cu) Alloys. (Fe-Al-Nb-B-(Cu)계 초미세결정합금의 자기적 특성)

  • 박진영;서수정;김규진;김광윤;노태환
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.4
    • /
    • pp.218-224
    • /
    • 1996
  • The magnetic properties and crystallization behaviors of $Fe_{83-x}Al_{x}Nb_{5}B_{12}(X=1~5at%)$ alloys were investigated. The $Fe_{80}Al_{3}Nb_{5}B_{12}$ alloy was developed a very good soft magnetic material with ultra-fine grain structure in Fe-Al-Nb-B system alloys. When 1 at% of Cu was added in Fe-Al-Nb-B alloy, the soft magnetic properties were found to improve significantly through the reduction of the grain size upto about 6~7 nm at $450^{\circ}C$. The magnetic properties of the $Fe_{79}Al_{3}Nb_{5}B_{12}Cu_{1}$ alloy were as follows : ${\mu}_{eff}(1\;kHz)=26,000,\;B_{10}=1.45\;T,\;H_{c}=25\;mOe,\;P_{c}(100\;kHz,\;0.2\;T)=55\;W/kg$, respectively.

  • PDF