• Title/Summary/Keyword: Cu/Zn superoxide dismutase

Search Result 218, Processing Time 0.036 seconds

The Study of Superoxide dismutase (SOD) and SOD-mimic Compounds in Panax ginseng C.A.Meyer

  • / U
    • Korean Journal of Plant Resources
    • /
    • v.10 no.2
    • /
    • pp.188-193
    • /
    • 1997
  • Panax ginseng C.A.Meyer,1 to 5 years old were electrophored and were stained for SOD activity. The result indicated a total of 13 distinct form of the enzyme and the pattern of achromatic bands were not different according to ages. Nine of the enzyme activities were eliminated with cyanide or peroxide treatment and were resistant to treatment of chloroform plus ethanol. It suggested that they may be cupro-zinc containing SOD, whereas four were cyanide or peroxide resistant and were eliminated with cholroform plus ethanol treatment. They may be manganese containing SOD. Ginseng roos. 1 to 5 years old were analyzed for their SOD measurement of SOD activities of all extracts, the significant difference of SOD activities were not shown according to ages. All ginseng extracts had the total SOD activities of all extracts, the significant difference of SOD activities were not shown according to ages. All ginseng extracts had the total SOD activities of about 700-800 unit/g of fresh weight. Therefore, the SOD activities from SOD-mimic compounds were higher than one from SOD. The ratio between the SOD activity from SOD-mimic compounds and one from true SOD was approximately 2:1 to 3:1.

  • PDF

Anti-oxidant Effects of the Water Extracts from the Inonotus Obliquus against Cisplatin- Induced Damage in HEI-OC1 Cells (차가버섯 물 추출물의 cisplatin에 의해 유도된 HEI-OC1세포 손상에 대한 항산화효과)

  • Youn, Myung-Ja;O, Kwang-Joong;Park, Kie-In
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.451-458
    • /
    • 2011
  • The medicinal mushroom Inonotus obliquus is a traditional and widely used multi-functional fungus. In this study, we have investigated whether Inonotus obliquus (Chaga mushroom) extracts exerts anti-oxidant effects on cisplatin-induced cytotoxicity in auditory cell line, HEI-OC1 cells. First of all, Chaga extracts has no harmful effects on viability of HEI-OC1 cells in the dose range of $65{\sim}125{\mu}g/m{\ell}$. Moreover, it shows cyto-protective effects on the cells treated with cisplatin-induced cytotoxicity in HEI-OC1 cells and the damage of hair cells arrays of the rat primary organ of Corti explants in the presence of cisplatin. Pretreatment with Chaga extracts inhibited the cell death, reactive oxygen species generation (ROS), lipid peroxidation induced by cisplatin. These effects were associated with the induction of antioxidant enzyme by Chaga extracts. We further investigated the effects of Chaga extracts on expression of antioxidant enzymes such as Cu, Zn superoxide dismutase (SOD 1) and Mn SOD (SOD 2) by RT-PCR. In addition, Chaga extracts shows SOD activity and SOD protein expression in cisplatin treated group induced similar to control group. Taken together, these results indicate that Chaga extracts can prevent cisplatin-induced cytotoxicity by radical-scavenging activity (SOD activity) in HEI-OC1 cells. It might be an effective as antioxidant and further studies on the chemo-preventive mechanisms of Inonotus obliquus are needed.

Effect of $\alpha$-Tocopherol and $\beta$-Carotene Supplementation on Oxidative Damage by Lipid Oxidation in Rat Liver

  • Song, Yeong-Ok;Kim, Hyun-Young;Jun, Yeong-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.3
    • /
    • pp.371-377
    • /
    • 1995
  • The effect of ${\alpha}$-tocopherol and ${\beta}$-carotene supplementation on reducing the oxidative damag in the liver of rats were studied. Forth-five male Sprague Dawley aged 4 weeks were randomly assigned to 9 groups of five for the 12 weeks of the study. Nine groups, sardine oil, sardine oil+Vt E, sardine oil+${\beta}$-carotene, soybean oil, soybean oil+Vt E, soybean oil+${\beta}$-carotene, lard, lard+Vt E, lard+${\beta}$-carotene group, were prepared. Sardine oil, soybean oil, or lard was used for dietary fat and 200% of ${\alpha}$ -tocopherol or 150% of ${\beta}$-carotene was supplemented to each diet. Each diet supplied 65% of total energy as carbohydrate, 15% as protein, and 20% as lipid. The MDA value and protein carbonyl contents of sardine oil group were significantly different(p<0.05) to those of other fat groups indicating that the most severe lipid oxidation occurred in the group fed diet containing highly polyunsaturated fatty acid. When ${\alpha}$-tocopherol or ${\beta}$ -carotene was supplemented to the sardine oil diet, MDA value(-35%, -15%, respectively) and protein carbonyl content(-44%, -32%, respectively) decreased significantly(p<0.05). Cu, Zn-superoxide dismutase(SOD) and catalase activities of three different sardine oil groups with or without antioxidants were lower than those of soybean oil or lard group. The reducing effect of ${\alpha}$-tocopherol on oxidative damage in sardine oil group supplemented with ${\alpha}$-tocopherol was noticeable(p<0.05). However the adverse effect of ${\beta}$-carotene was observed. SOD and catalase activities of ${\beta}$-carotene supplemented groups were that the lowest among the same fat groups, but the differences were not statistically significant. The possible cause of decreased enzyme activity seemed to be related to the vitamin A(Vt A) toxicity in the liver where retinol converted from dietary ${\beta}$-carotene in the intestinal mucosa was stored.

  • PDF

The Effect of Dehydroepiandrosterone on Isoproterenol-induced Cardiomyopathy in Rats

  • Jeong, Ji-Hoon;Kim, Chan-Woong;Yim, Sung-Hyuk;Shin, Yong-Kyoo;Park, Kyung-Wha;Park, Eon-Sub
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.2
    • /
    • pp.79-83
    • /
    • 2006
  • We evaluated therapeutic and preventive properties of dehydroepiandrosterone (DHEA), a weak androgenic steroid, against isoproterenol-induced cardiomyopathy. The cardiomyopathy was induced by daily i.p. administration of isoproterenol to rats for five days. One group of rats were given with daily s.c. for 5 days during isoproterenol and the other group with daily s.c. DHEA for total 10 days, including 5 days before and during isoproterenol. The animals were killed after each treatment, and cardiac muscle failure was evaluated using histopathologic examination and biochemical indices. DHEA was found to reduce the damaged area and inhibit the elevation in the serum levels of glutamic oxaloacetic transaminase (SGOT), lactate dehydrogenase (LDH), skeletal muscle creatine kinase (CK) and heart creatine kinase (CK-MB) induced by isoproterenol. We also assayed widely used oxidative stress parameters, including thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), catalase and glutathion peroxidase (GPx). DHEA decreased the escalated level of TBARS and enhanced the anti oxidant defense reaction with an increase in Mn-SOD and Cu/Zn-SOD. On the other hand, the treatment with DHEA did not affect catalase and GPx activity. The present study indicates that DHEA has a therapeutic and preventive effect against isoproterenol-induced cardiomyopathy and its effects may depend largely on the increase in SOD activity.

Examination of the Antioxidant Potential of Pycnogenol under Conditions of Oxidative Stress in Escherichia coli Mutants Deficient in HP1 and Superoxide Dismutase Activities

  • Youm, Jeong-A;Kim, Young-Gon
    • Journal of Microbiology
    • /
    • v.41 no.1
    • /
    • pp.28-33
    • /
    • 2003
  • Pycnogenol (PYC) is believed to have potential as a therapeutic agent against free radical-mediated oxidative stress. It is important, therefore, to understand the interactions between PYC and cellular defenses against oxidative stress. Toward this end, we analyzed the survival rates on the gene expression responses of E. coli sod katG mutants to PYC after pre-treatment of PQ or H$_2$O$_2$-mediated stress under aerobic conditions. We identified SOD induced by PYC, but not HP1 in sod hate mutants. A striking result was the PYC induction of SOD with antioxidant property in single katG mutant cells, particularly MnSOD and CuZnSOD. These inductions were further increased with oxidative stress, while HP1 was not induced in these conditions. The effects of pycnogenol treatment on these cells depend in part on its concentration on the stress response. Protective effects of PYC exposure which affected gene expression in cells were consistent with cell survival rates. Our results demonstrate that pycnogenol may alter the stress response gene expression in a specific manner such as SOXRS because PYC induction of single mutant only worked under increased PQ stress. All together our data indicate that SOD activity is essential for the cellular defense against PQ-mediated oxidative stress, suggesting that PYC may not be effective as an antioxidant in only oxidative stress conditions. On the other hand, it was expected that PYC may play a role as a pro-oxidant and if it is available for use, it should be evaluated carefully.

Protective efficacy of attenuated Salmonella Typhimurium strain expressing BLS, Omp19, PrpA, or SOD of Brucella abortus in goats

  • Leya, Mwense;Kim, Won Kyong;Ochirkhuyag, Enkhsaikhan;Yu, Eun-Chae;Kim, Young-Jee;Yeo, Yoonhwan;Yang, Myeon-Sik;Han, Sang-Seop;Lee, John Hwa;Tark, Dongseob;Hur, Jin;Kim, Bumseok
    • Journal of Veterinary Science
    • /
    • v.22 no.2
    • /
    • pp.15.1-15.13
    • /
    • 2021
  • Background: Attenuated Salmonella strain can be used as a vector to transport immunogens to the host antigen-binding sites. Objectives: The study aimed to determine the protective efficacy of attenuated Salmonella strain expressing highly conserved Brucella immunogens in goats. Methods: Goats were vaccinated with Salmonella vector expressing individually lipoprotein outer-membrane protein 19 (Omp19), Brucella lumazine synthase (BLS), proline racemase subunit A (PrpA), Cu/Zn superoxide dismutase (SOD) at 5 × 109 CFU/mL and challenge of all groups was done at 6 weeks after vaccination. Results: Among these vaccines inoculated at 5 × 109 CFU/mL in 1 mL, Omp19 or SOD showed significantly higher serum immunoglobulin G titers at (2, 4, and 6) weeks post-vaccination, compared to the vector control. Interferon-γ production in response to individual antigens was significantly higher in SOD, Omp19, PrpA, and BLS individual groups, compared to that in the vector control (all p < 0.05). Brucella colonization rate at 8 weeks post-challenge showed that most vaccine-treated groups exhibited significantly increased protection by demonstrating reduced numbers of Brucella in tissues collected from vaccinated groups. Real-time polymerase chain reaction revealed that Brucella antigen expression levels were reduced in the spleen, kidney, and parotid lymph node of vaccinated goats, compared to the non-vaccinated goats. Besides, treatment with vaccine expressing individual antigens ameliorated brucellosis-related histopathological lesions. Conclusions: These results delineated that BLS, Omp19, PrpA, and SOD proteins achieved a definite level of protection, indicating that Salmonella Typhimurium successfully delivered Brucella antigens, and that individual vaccines could differentially elicit an antigen-specific immune response.

Melatonin mitigates the adverse effect of hypoxia during myocardial differentiation in mouse embryonic stem cells

  • Lee, Jae-Hwan;Yoo, Yeong-Min;Lee, Bonn;Jeong, SunHwa;Tran, Dinh Nam;Jeung, Eui-Bae
    • Journal of Veterinary Science
    • /
    • v.22 no.4
    • /
    • pp.54.1-54.13
    • /
    • 2021
  • Background: Hypoxia causes oxidative stress and affects cardiovascular function and the programming of cardiovascular disease. Melatonin promotes antioxidant enzymes such as superoxide dismutase, glutathione reductase, glutathione peroxidase, and catalase. Objectives: This study aims to investigate the correlation between melatonin and hypoxia induction in cardiomyocytes differentiation. Methods: Mouse embryonic stem cells (mESCs) were induced to myocardial differentiation. To demonstrate the influence of melatonin under hypoxia, mESC was pretreated with melatonin and then cultured in hypoxic condition. The cardiac beating ratio of the mESC-derived cardiomyocytes, mRNA and protein expression levels were investigated. Results: Under hypoxic condition, the mRNA expression of cardiac-lineage markers (Brachyury, Tbx20, and cTn1) and melatonin receptor (Mtnr1a) was reduced. The mRNA expression of cTn1 and the beating ratio of mESCs increased when melatonin was treated simultaneously with hypoxia, compared to when only exposed to hypoxia. Hypoxia-inducible factor (HIF)-1α protein decreased with melatonin treatment under hypoxia, and Mtnr1a mRNA expression increased. When the cells were exposed to hypoxia with melatonin treatment, the protein expressions of phospho-extracellular signal-related kinase (p-ERK) and Bcl-2-associated X proteins (Bax) decreased, however, the levels of phospho-protein kinase B (p-Akt), phosphatidylinositol 3-kinase (PI3K), B-cell lymphoma 2 (Bcl-2) proteins, and antioxidant enzymes including Cu/Zn-SOD, Mn-SOD, and catalase were increased. Competitive melatonin receptor antagonist luzindole blocked the melatonin-induced effects. Conclusions: This study demonstrates that hypoxia inhibits cardiomyocytes differentiation and melatonin partially mitigates the adverse effect of hypoxia in myocardial differentiation by regulating apoptosis and oxidative stress through the p-AKT and PI3K pathway.

Scratching Stimuli of Mycelia Influence Fruiting Body Production and ROS-Scavenging Gene Expression of Cordyceps militaris

  • Liu, Gui-Qing;Qiu, Xue-Hong;Cao, Li;Han, Ri-Chou
    • Mycobiology
    • /
    • v.46 no.4
    • /
    • pp.382-387
    • /
    • 2018
  • The entomopathogenic fungus Cordyceps militaris is a valuable medicinal ascomycete, which degenerates frequently during subsequent culture. To avoid economic losses during industrialized production, scratching stimuli of mycelia was introduced to improve the fruiting body production. The present results indicated that higher yields and biological efficiency were obtained from two degenerate strains (YN1-14 and YN2-7) but not from g38 (an insertional mutant in Rhf1 gene with higher yields and shorter growth periods). Furthermore, the growth periods of the fruiting bodies were at least 5 days earlier when the mycelia were scratched before stromata differentiation. Three ROS-scavenging genes including Cu/Zn superoxide dismutase (CmSod1), Glutathione peroxidase (CmGpx), and Catalase A (CmCat A) were isolated and their expression profiles against scratching were determined in degenerate strain YN1-14 and mutant strain g38. At day 5 after scratching, the expression level of CmGpx significantly decreased for strain g38, but that of CmSod1 significantly increased for YN1-14. These results indicated that scratching is an effective way to promote fruiting body production of degenerate strain, which may be related at least with Rhf1 and active oxygen scavenging genes.

Study of Ojayeonjonghwan on hydrogen peroxide-induced oxidative stress in male reproductive GC-1 germ cell lines (Hydrogen peroxide에 의해 유도된 남성 생식 세포 GC-1 cell에 미치는 오자연종환(五子衍宗丸)의 효과 연구)

  • Chang, Mun Seog;Lee, Ho Chul;Lee, Seung Ho;Park, Seong Kyu
    • Herbal Formula Science
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Objectives : The purpose of this study was to investigate the antioxidant activity of water extract of Ojayeonjonghwan (OYH) in GC-1 germ cell lines. Methods : DPPH radical scavenging activity and cell viability assays in GC-1 germ cell lines were performed. In addition, the protective effects of OYH against hydrogen peroxide-induced oxidative stress in GC-1 germ cell lines were examined by measuring cell viability after H2O2 treatmet. The formation of ROS and the antioxidant enzymes activity such as SOD and catalase were measured in the same condition. Results : OYH scavenged DPPH radical dose-dependent manner and the IC50 was 63.79 ㎍/ml. OYH showed no cytotoxicity at concentration of 1, 10, 100 ㎍/ml. The hydrogen peroxide-induced cytotoxicity of GC-1 germ cell lines was protected to 53.66% by OYH at concentration of 10 ㎍/ml. OYH effectively inhibited ROS production in GC-1 germ cell lines. Mn SOD and catalase protein expression were significantly increased in GC-1 germ cell lines, but Cu/Zn SOD protein expression was not significantly changed. Conclusions : In conclusion, OYH has antioxidant activities against hydrogen peroxide-induced oxidative stress in GC-1 germ cell lines.

Comparative Study of Autophagy in Oxaliplatin-Sensitive and Resistant SNU-C5 Colon Cancer Cells

  • Boo, Sun-Jin;Piao, Mei Jing;Kang, Kyoung Ah;Zhen, Ao Xuan;Fernando, Pincha Devage Sameera Madushan;Herath, Herath Mudiyanselage Udari Lakmini;Lee, Seung Joo;Song, Seung Eun;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.30 no.5
    • /
    • pp.447-454
    • /
    • 2022
  • Few studies have evaluated the role of autophagy in the development of oxaliplatin (OXT) resistance in colon cancer cells. In this study, we compared the role of autophagy between SNU-C5 colon cancer cells and OXT-resistant SNU-C5 (SNU-C5/OXTR) cells. At the same concentration of OXT, the cytotoxicity of OXT or apoptosis was significantly reduced in SNU-C5/OXTR cells compared with that in SNU-C5 cells. Compared with SNU-C5 cells, SNU-C5/OXTR cells exhibited low levels of autophagy. The expression level of important autophagy proteins, such as autophagy-related protein 5 (Atg5), beclin-1, Atg7, microtubule-associated proteins 1A/1B light chain 3B I (LC3-I), and LC3-II, was significantly lower in SNU-C5/OXTR cells than that in SNU-C5 cells. The expression level of the autophagy-essential protein p62 was also lower in SNU-C5/OXTR cells than in SNU-C5 cells. In SNU-C5/OXTR cells, the production of intracellular reactive oxygen species (ROS) was significantly higher than that in SNU-C5 cells, and treatment with the ROS scavenger N-acetylcysteine restored the reduced autophagy levels. Furthermore, the expression of antioxidant-related nuclear factor erythroid 2-related factor 2 transcription factor, heme oxygenase-1, and Cu/Zn superoxide dismutase were also significantly increased in SNU-C5/OXTR cells. These findings suggest that autophagy is significantly reduced in SNU-C5/OXTR cells compared with SNU-C5 cells, which may be related to the production of ROS in OXT-resistant cells.