• 제목/요약/키워드: Cu/SiCN

검색결과 5건 처리시간 0.023초

저온 Cu 하이브리드 본딩을 위한 SiCN의 본딩 특성 리뷰 (A Review on the Bonding Characteristics of SiCN for Low-temperature Cu Hybrid Bonding)

  • 김연주;박상우;정민성;김지훈;박종경
    • 마이크로전자및패키징학회지
    • /
    • 제30권4호
    • /
    • pp.8-16
    • /
    • 2023
  • 디바이스 소형화의 한계에 다다르면서, 이를 극복할 수 있는 방안으로 차세대 패키징 기술의 중요성이 부각되고 있다. 병목 현상을 해결하기 위해 2.5D 및 3D 인터커넥트 피치의 필요성이 커지고 있는데, 이는 신호 지연을 최소화 할 수 있도록 크기가 작고, 전력 소모가 적으며, 많은 I/O를 가져야 하는 등의 요구 사항을 충족해야 한다. 기존 솔더 범프의 경우 미세화 한계와 고온 공정에서 녹는 등의 신뢰성 문제가 있어, 하이브리드 본딩 기술이 대안책으로 주목받고 있으며 최근 Cu/SiO2 구조의 문제점을 개선하고자 SiCN에 대한 연구 또한 활발히 진행되고 있다. 해당 논문에서는 Cu/SiO2 구조 대비 Cu/SiCN이 가지는 이점을 전구체, 증착 온도 및 기판 온도, 증착 방식, 그리고 사용 가스 등 다양한 증착 조건에 따른 SiCN 필름의 특성 변화 관점에서 소개한다. 또한, SiCN-SiCN 본딩의 핵심 메커니즘인 Dangling bond와 OH 그룹의 작용, 그리고 플라즈마 표면 처리 효과에 대해 설명함으로써 SiO2와의 차이점에 대해 기술한다. 이를 통해, 궁극적으로 Cu/SiCN 하이브리드 본딩 구조 적용 시 얻을 수 있는 이점에 대해 제시하고자 한다.

A bilayer diffusion barrier of atomic layer deposited (ALD)-Ru/ALD-TaCN for direct plating of Cu

  • Kim, Soo-Hyun;Yim, Sung-Soo;Lee, Do-Joong;Kim, Ki-Su;Kim, Hyun-Mi;Kim, Ki-Bum;Sohn, Hyun-Chul
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.239-240
    • /
    • 2008
  • As semiconductor devices are scaled down for better performance and more functionality, the Cu-based interconnects suffer from the increase of the resistivity of the Cu wires. The resistivity increase, which is attributed to the electron scattering from grain boundaries and interfaces, needs to be addressed in order to further scale down semiconductor devices [1]. The increase in the resistivity of the interconnect can be alleviated by increasing the grain size of electroplating (EP)-Cu or by modifying the Cu surface [1]. Another possible solution is to maximize the portion of the EP-Cu volume in the vias or damascene structures with the conformal diffusion barrier and seed layer by optimizing their deposition processes during Cu interconnect fabrication, which are currently ionized physical vapor deposition (IPVD)-based Ta/TaN bilayer and IPVD-Cu, respectively. The use of in-situ etching, during IPVD of the barrier or the seed layer, has been effective in enlarging the trench volume where the Cu is filled, resulting in improved reliability and performance of the Cu-based interconnect. However, the application of IPVD technology is expected to be limited eventually because of poor sidewall step coverage and the narrow top part of the damascene structures. Recently, Ru has been suggested as a diffusion barrier that is compatible with the direct plating of Cu [2-3]. A single-layer diffusion barrier for the direct plating of Cu is desirable to optimize the resistance of the Cu interconnects because it eliminates the Cu-seed layer. However, previous studies have shown that the Ru by itself is not a suitable diffusion barrier for Cu metallization [4-6]. Thus, the diffusion barrier performance of the Ru film should be improved in order for it to be successfully incorporated as a seed layer/barrier layer for the direct plating of Cu. The improvement of its barrier performance, by modifying the Ru microstructure from columnar to amorphous (by incorporating the N into Ru during PVD), has been previously reported [7]. Another approach for improving the barrier performance of the Ru film is to use Ru as a just seed layer and combine it with superior materials to function as a diffusion barrier against the Cu. A RulTaN bilayer prepared by PVD has recently been suggested as a seed layer/diffusion barrier for Cu. This bilayer was stable between the Cu and Si after annealing at $700^{\circ}C$ for I min [8]. Although these reports dealt with the possible applications of Ru for Cu metallization, cases where the Ru film was prepared by atomic layer deposition (ALD) have not been identified. These are important because of ALD's excellent conformality. In this study, a bilayer diffusion barrier of Ru/TaCN prepared by ALD was investigated. As the addition of the third element into the transition metal nitride disrupts the crystal lattice and leads to the formation of a stable ternary amorphous material, as indicated by Nicolet [9], ALD-TaCN is expected to improve the diffusion barrier performance of the ALD-Ru against Cu. Ru was deposited by a sequential supply of bis(ethylcyclopentadienyl)ruthenium [Ru$(EtCp)_2$] and $NH_3$plasma and TaCN by a sequential supply of $(NEt_2)_3Ta=Nbu^t$ (tert-butylimido-trisdiethylamido-tantalum, TBTDET) and $H_2$ plasma. Sheet resistance measurements, X-ray diffractometry (XRD), and Auger electron spectroscopy (AES) analysis showed that the bilayer diffusion barriers of ALD-Ru (12 nm)/ALD-TaCN (2 nm) and ALD-Ru (4nm)/ALD-TaCN (2 nm) prevented the Cu diffusion up to annealing temperatures of 600 and $550^{\circ}C$ for 30 min, respectively. This is found to be due to the excellent diffusion barrier performance of the ALD-TaCN film against the Cu, due to it having an amorphous structure. A 5-nm-thick ALD-TaCN film was even stable up to annealing at $650^{\circ}C$ between Cu and Si. Transmission electron microscopy (TEM) investigation combined with energy dispersive spectroscopy (EDS) analysis revealed that the ALD-Ru/ALD-TaCN diffusion barrier failed by the Cu diffusion through the bilayer into the Si substrate. This is due to the ALD-TaCN interlayer preventing the interfacial reaction between the Ru and Si.

  • PDF

Synthesis and characteristics of ZnS:Cn,Cl blue-green naao phosphor

  • Lee, Hong-Ro ;Park, Chang-Hyun;cho, Tai-Yeon;Han, Sang-Do
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2007년도 추계학술대회 논문집
    • /
    • pp.112-113
    • /
    • 2007
  • ZnS:Cn,Cl phosphor was coated by solid-gel reaction with $SiO_2$ outside layer. The effect of $Cu^{2+}$ -doping concentration has been investigated on the luminescence characteristics of ZnS:Cn,Cl blue-green phosphors for inorganic electro luminescent device. Also, SiO2 coated layers' effect on luminescence characteristics. Evaluation of luminescence characteristics dependent on the synthesis conditions is important to get high-performance phosphors properties. EL and PL properties such as luminescence intensity and chromaticity of ZnS:Cn,Cl phosphors synthesized with different concentration of activator, $Cu^{2+}$, were analysed separately

  • PDF

경남 밀양지역 납석광상과 안산암질 모암의 지구화학적 연구 (A Geochemical Study on Pyrophyllite Deposits and Andesitic Wall-Rocks in the Milyang Area, Kyeongnam Province)

  • 오대균;전효택;민경원
    • 자원환경지질
    • /
    • 제25권1호
    • /
    • pp.27-39
    • /
    • 1992
  • Several pyrophyllite deposits occur around the Milyang area where Cretaceous andesitic rocks and spatially related granitic rocks are widely distributed. Pyrophyllite ores consist mainly of pyrophyllite, and quartz with small amount of sericite, pyrite, dumortierite, and diaspore. The andesitic rocks and spatially related granitic rocks in this area suggest that they could be formed from the same series of a calc-alkaline magma series. The contents of $SiO_2$, $Al_2O_3$, LOI(loss on ignition) are enriched, and $K_2O$, $Na_2O$, CaO, MgO, $Fe_2O_3$ are depleted in altered andesitic rocks and ores. Enrichment of As, Cr, Sr, V, Sb and depletion of Ba, Cs, Ni, Rb, U, Y, Co, Sc, Zn are characteristic during mineralization. The pyrophyllite ores can be discriminated from the altered-and unaltered wall-rocks by an increasing of $(La/Lu)_{cn}$ from 4.18~22.13 to 8.98~55.05. In R-mode cluster analysis, Yb-Lu-Y, La-Ce-Hf-Th-U-Zr, $TiO_2-V-Al_2O_3$, Sm-Eu, $CaO-Na_2O-MnO$, Cu-Zn-Ag, $K_2O-Rb$ are closely correlated. In the discriminant analysis of multi-element data, $P_2O_5$, As, Cr and $Fe_2O_3$, Sr are helpful to identify the ores from the unaltered-and altered wall-rocks. In the factor analysis, the factors of alteration of andesitic rocks and ore mineralization were extracted. In the change of ions per unit volume, $SiO_2$, $Al^{3+}$ and LOI are enriched and $Na^+$, $K^+$, $Ca^{2+}$, $Mg^{2+}$, $Mn^{2+}$ and $Fe^{3+}$ are depleted during the alteration processes. The Milyang and the Sungjin pyrophyllite deposits could be mineralized by hydrothermal alteration in a geochemical condition of low activity ratio of alkaline ions to hydrogen ion with reference to spatially related granitic rocks.

  • PDF