• Title/Summary/Keyword: Cu(Mg)

Search Result 2,264, Processing Time 0.031 seconds

Interfacial Properties in Cu-phthalocyanine-based Hybrid Inorganic/Organic Multilayers

  • Lee, Nyun Jong;Ito, Eisuke;Bae, Yu Jeong;Kim, Tae Hee
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.261-264
    • /
    • 2012
  • Interfacial properties of 5 nm MgO(001)/7 nm Fe(001)/1.8 nm MgO(001)/t nm Cu-phthalocyanine (CuPc) hybrid multilayers with t = 0, 1, 7, and 10 were investigated by using x-ray photoemission spectroscopy (XPS). Rather sharp interfacial properties were observed in the CuPc films grown on an epitaxial MgO/Fe/MgO(001) trilayer than a MgO/Fe(001) bilayer. This work suggests a new way to improve device performance of organic spintronic devices by utilizing an artificially grown MgO(001) thin layer.

Influence of Soil pH, Total and Mobile Contents on Copper and Zinc Uptake by Lettuce Grown in Plastic Film Houses (시설재배지 토양 pH와 전함량 및 이동태 함량이 상추의 구리와 아연 흡수에 미치는 영향)

  • Kim, Rog-Young;Sung, Jwa-Kyung;Lee, Ju-Young;Jang, Byoung-Choon;Ha, Sang-Keun;Lee, Jong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1042-1047
    • /
    • 2011
  • Copper and Zinc are essential trace elements for all living organisms. When presenting in excess amount in soils, however they can be toxic to plants. In order to examine the transfer of Cu and Zn from soils to plants and to predict their contents in plants using soil factors, we investigated total and mobile contents of Cu and Zn in soils and their uptake by lettuce (Lactuca sativa L.) in plastic film houses. Total Cu and Zn contents in soils were $17.5{\sim}65.9mg\;kg^{-1}$ (mean: $39.3mg\;kg^{-1}$) and $63.2{\sim}200mg\;kg^{-1}$ (mean: $137mg\;kg^{-1}$), respectively. Mobile Cu and Zn contents in soils were $(0.04){\sim}0.55mg\;kg^{-1}$ (mean: $0.18mg\;kg^{-1}$) and $(0.05){\sim}2.62mg\;kg^{-1}$ (mean: $0.47mg\;kg^{-1}$), respectively. Soil pH ranged from 5.4 to 7.3 and OM from 24.1 to $59.9g\;kg^{-1}$. Mean Cu contents in leaves and roots of lettuce were 9.20 and $17.2mg\;kg^{-1}$, respectively which showed that Cu was accumulated mainly in root parts of lettuce and not easily transported to leaves. In contrast, Zn was fairly evenly distributed in leaves and roots with mean values of 54.5 and $56.7mg\;kg^{-1}$, indicating relative high mobility of Zn in lettuce. Transfer factors of Cu and Zn from soil total contents to roots and leaves of lettuce ($TFS_tR$ and $TFS_tL$) were between 0.1 and 1, while transfer factors from soil mobile contents to roots and leaves ($TFS_mR$ and $TFS_mL$) were between 10 and 1000. Transfer factors of Zn were higher than those of Cu, showing Zn was more easily absorbed by plants than Cu. Cu and Zn uptake was stronger influenced by soil pH and mobile contents than total contents and OM and could be significantly described by multiple regression equations including soil pH and soil mobile contents as variables.

Cu-Fe계 동합금의 강도 및 전기전도도에미치는 첨가 원소의 영향

  • Kim, Dae-Hyeon;Lee, Gwang-Hak
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.44.1-44.1
    • /
    • 2009
  • 본 연구에서는 Sn과 Mg를 Cu-Fe-P 합금계에 첨가 하였을 때 합금의 미세조직과 물리적 특성에 미치는 영향을 조사하였다. Cu-Fe-P 합금에 Sn과 Mg를첨가 함으로써 생성된 석출상과 합금의 미세조직, 기계적 성질 및 전기전도도를 조사하였다. 합금성분은 OES로 분석하였으며 SEM 및 EDX로 미세 석출상이생성됨을 확인하였다. 본연구를 통하여 Cu-Fe-P 합금계에 Sn과 Mg를 적절히 첨가 함으로써 고강도-고전도도의 동합금 제조가 가능함을 확인하였다.

  • PDF

Evaluation on Natural Background of the Soil Heavy Metals in Korea (우리나라 토양의 중금속 자연배경농도 평가)

  • Yoon, Jeong-Ki;Kim, Dong-Ho;Kim, Tae-Seung;Park, Jong-Gyum;Chung, Il-Rok;Kim, Jong-Ha;Kim, Hyuk
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.3
    • /
    • pp.32-39
    • /
    • 2009
  • This study was conducted in order to get the scientific background for soil pollution criteria. The 92 soil samples derived from various geological units were taken and analyzed to survey natural heavy metal background levels using aqua regia digestion method and 0.1N HCl extraction method. From these results, the average natural contents of metals were 0.287 mg/kg for Cd, 15.26 mg/kg for Cu, 18.43 mg/kg for Pb, 25.36 mg/kg for Cr, 54.27 mg/kg for Zn, 17.68 mg/kg for Ni, 6.83 mg/kg for As by the aqua regia method, and 0.040 mg/kg for Cd, 0.48 mg/kg for Cu, 3.06 mg/kg for Pb, 0.09 mg/kg for Cr, 1.54 mg/kg for Zn, 0.27 mg/kg for Ni, 0.089 mg/kg for As by the 0.1N HCl extraction method. Ratios of soluble contents and total contents were Cd 0.14, Cu 0.03, Pb 0.17, Cr 0.004, Zn 0.03, Ni 0.02, As 0.013 and the correlation coefficients of soluble contents and total contents were 0.24(As), 0.88(Cd), 0.43(Cr), 0.65(Cu), 0.70(Pb), 0.61(Ni), 0.24(Zn). The correlation factor decreased in the order of Cd > Pb > Cu > Ni > Cr > Zn $\approx$ As.

A Comparative Study on the NOx Removal Activities of Metal-ion-exchanged Mg/Cu-ZSM-5 Catalysts in the Treatment of Flue Gas from Stationary Sources (금속이온교환된 Mg/Cu-ZSM-5 촉매를 사용한 배연 탈질 공정에서 De-NOx활성 비교연구)

  • 김재천;이병용;정석진
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.421-428
    • /
    • 1996
  • In this study, in order to make up its draw-back in Cu-ZSM-5 catalytic system, some of transition metals or alkaline earth metals were cocation-exchanged in Cu-ZSM-5. Among various cocation-ion-exchanged ZSM-5 catalysts, Mg/Cu-ZSM-5 has been found the most active and durable in NOx reduction even at high oxygen content as well as at the presence of water vapor. The role of Mg in ZSM-5 is supposed to prevent the dealumination of aluminum ions in super-cage even at harsh hydro-thermal conditions, and also it seems to stabilize the Cu ions in the structure. In order to prepare commercially available catalysts, Mg/Cu-ZSM-5 catalysts were wash-coated on the surface of honeycomb type monolith, and tested in terms of catalytic activities. As a result, it was found that the catalyst prepared bt the wash-coating showed satisfactorily high NOx conversion for the practical use in SCR process.

  • PDF

RRA Treatment of Semi-Solid Al-Zn-Mg-Cu Al Alloy Fabricated by Cooling Plate (냉각판으로 제조된 Al-Zn-Mg-Cu계 반응고 알루미늄 합금의 RRA 처리)

  • Kim, Dae-Hwan;Shim, Sung-Yong;Kim, Young-Hwa;Lim, Su-Gun
    • Journal of Korea Foundry Society
    • /
    • v.29 no.6
    • /
    • pp.265-269
    • /
    • 2009
  • The optimum RRA heat treating conditions and SCC (stress corrosion cracking) resistance of semi-solid Al-Zn-Mg-Cu alloy fabricated by inclined cooling plate were compared with those of conventional mould cast alloys. The non-stirring method characterized by using a cooling plate can effectively eliminate dendritic structure and form a fine globular semisolid microstructure in as-cast Al-Zn-Mg-Cu alloy and the SCC resistance of semi-solid Al-Zn-Mg-Cu alloy was higher than that of conventional mold cast alloy. Also, after retrogressed treatment at RRA heat treatment of semi-solid Al-Zn-Mg-Cu alloy, retrogressed treatment time has increased more than 10 minutes at $180^{\circ}C$ to recovery the T6 heat treatment strength.

Stress Corrosion Cracking of High Strength Al-Zn-Mg-Cu Aluminum Alloy with Different Compositions (고강도 Al-Zn-Mg-Cu 합금에서 조성에 따른 응력부식균열 특성)

  • Kim, Jun-Tak;Kim, Sang-Ho
    • Journal of Surface Science and Engineering
    • /
    • v.41 no.3
    • /
    • pp.109-113
    • /
    • 2008
  • High strength 7xxx series Al-Zn-Mg alloy have been investigated for using light weight automotive parts especially for bump back beam. The composition of commercial 7xxx aluminum has the Zn/Mg ratio about 3 and Cu over 2 wt%, but this composition isn't adequate for appling to automotive bump back beam due to its high resistance to extrusion and bad weldability. In this study the Zn/Mg ratio was increased for better extrusion and Cu content was reduced for better welding. With this new composition we investigated the effect of composition on the resistivity against stress corrosion cracking. As the Zn/Mg ratio is increased fracture energy obtained by slow strain rate test was decreased, which means degradation of SCC resistance. While the fracture energy was increased with Cu contents although it is below 1%, which means improvement of SCC resistance. These effects of composition change on the SCC resistivity were identified by observing the fracture surface and crack propagation.

Changes of Chemical Species in Soil Solution Induced by Heavy Metals (중금속이 토양용액 중 화학종 변화에 미치는 영향)

  • Yang, Jae-E.;Lee, Ki-Won;Kim, Jeong-Je;Lim, Hyung-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.3
    • /
    • pp.263-271
    • /
    • 1995
  • Chemical assessment of soil pollution with heavy metals was made by analyzing the changes in pH, ionic strength, cationic concentration and chemical species in the soil solution. Saturated pastes of the unpolluted soils were made by adding solutions containing Cu or Cd and the final Cu or Cd concentrations were in the range of 0 to 400 mg/kg. After equilibrating for 24 hours at $25^{\circ}C$, the soil solution was extracted from the saturated pastes by the vacuum extraction method and analyzed for pH, electrical conductivity, Cu, Cd, cations and inorganic ligands. Chemical species in soil solution were calculated by the GEOCHEM-PC program employing the input variables of pH, ionic strength(${\mu}$), molar concentrations of cations and ligands. Increasing Cu or Cd additions lowered pH of the soil solution but increased concentrations of Ca, Mg and K resulting in increases of ${\mu}$ of the soil solution. Effects of Cu on lowering pH and increasing ${\mu}$ were greater than those of Cd. Concentrations of Cu or Cd in soil solution were relatively very low as compared to those of additions, but increased linearly with increasing additions representing that concentrations of Cu were higher than those of Cd. At 400 mg/kg additions, concentrations of Cu were in the range of 0.51 to 11.70 mg/L but those of Cd were 34.4 to 88.5 mg/L. Major species of Ca, Mg and K were free ions and these species were equivalent to greater than 95 molar % of the existing respective molar concentrations. These cationic species were not changed by Cu or Cd additions. Major species of Cu in lower pH soils such as SiCL and SL were free $Cu^{2+}$ (>95 molar %), but those in LS having a higher pH were free $Cu^{2-}$ and Cu-hydroxide complex. At 100 mg Cu/kg treatment, $Cu^{2+}$ and Cu-hydroxide complex were equivalent to 73 and 22.4 molar %, respectively. These respective percentages were decreased and increased correspondingly with increasing Cu treatments. Major species of Cd in soil solution were free $Cd^{2+}$ and Cd-chloride complex, representing 79 to 85 molar % for $Cd^{2+}$ and 13 to 20% for Cd-chloride complex at 10 mg Cd/kg treatment. With increasing Cd additions to 400 mg/kg, $Cd^{2+}$ species decreased to $40{\sim}47%$ but Cd-chloride complexes increased to $53{\sim}60$ molar %. These results demonstrated that soil contamination with heavy metals caused an adverse effect on the plant nutritional aspects of soil solution by lowering pH, increasing cations temporarily, and increasing free metal concentrations and species enough to be phytotoxic.

  • PDF

Contents of Heavy Metals in Sea Water, Sediments, Fishes and Shellfishes From Kunsan.Changhang Coastal Areas (군산.장항 해안지역 해수, 해안저질토 및 어패류 중 중금속함량)

  • Han, Kang-Wan;Cho, Jae-Young;Lee, Jin-Ha
    • Applied Biological Chemistry
    • /
    • v.40 no.4
    • /
    • pp.347-351
    • /
    • 1997
  • Contents of heavy metals in sea waters, sediments, fishes, and shellfishes from Kunsan Changhang coastal areas were investigated. Average contents of heavy metals in sea water were Pb 2.35, Cd 0.52, Cu 2.09, Zn 13.65 and $Hg\;0.24\;{\mu}g/l$. Average contents of heavy metals in sediments were Pb 19.49, Cd 0.15, Cu 9.31, Zn 20.07 mg/kg, and $Hg{\;}13.6{\;}{\mu}g/l$. Average contents of Pb, Cd, Cu, Zn, and Hg in .Acantogobius hasta were 1.08, 0.05, 2.24, 58.14, and 0.151 mg/kg and those in Mugil cephalus were 1.63, 0.05, 1.51, 32.69, and 0.065 mg/kg. Accumulation ratios of Pb and Cu in Acantogobius hasta were similar to Mugil cephalus but accumulation ratios of Zn and Hg in Acantogobius hasta were higher 2 times than in Mugil cephalus. Average contents of Pb, Cd, Cu, Zn, and Hg in Cyclina sinensis were 1.03, 1.23, 6.83, 75.83, and 0.071 mg/kg and those in Ruditapes philippinarum were 0.93, 0.86, 5.90, 52.16, and 0.074 mg/kg. Accumulation ratios of heavy metals in shellfishes were in the order of Cu>Cd>Zn>Pb>Hg, irrespective of shellfishes kind.

  • PDF

Determination of Heavy Metals for Sediment Proximated to Water in Lake(II) (호소내 퇴적물의 수질오염물질 분석(II) - 중금속 -)

  • Park, Sun-Ku;Kim, Sung-Soo;Ko, Oh-Suk
    • Analytical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.140-146
    • /
    • 2001
  • The study was carried out to analyze the pollutants, Fe, Cu, Cr, Zn, Cd for 3 sediments of 5 sites collected from lake in K river basin. 5cm sediment, which is nearly proximated to water from sediment of depth 30cm, showed higher Fe, Cu, Cr, Zn, Cd data than another 5-10cm and 10cm sediment, which is separated from sediment of depth 30cm. Also, 5cm sediment nearly proximated to water showed the following data: Fe, 34.9-39.8mg/L, Cu, 34.5-44.8mg/L, Cr, 68.0-79.2mg/L, Zn, 147.4-126.0mg/L, Cd, 2.2-1.0mg/L, respectively. From this results, we know the fact that the pollution degree of sediment has an effect on the water quality in like and stream.

  • PDF