• Title/Summary/Keyword: Cu(In,Ga)Se2

Search Result 266, Processing Time 0.031 seconds

CIGS 박막 태양전지를 위한 $(In,Ga)_2Se_3$ 전구체 제작 및 분석

  • Jo, Dae-Hyeong;Jeong, Yong-Deok;Park, Rae-Man;Han, Won-Seok;Lee, Gyu-Seok;O, Su-Yeong;Kim, Je-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.285-285
    • /
    • 2010
  • $Cu(In,Ga)Se_2$ (CIGS) 박막 태양전지 제조에는 동시증발법 (co-evaporation)으로 Cu, In, Ga, Se 각 원소의 증발을 세 단계로 제어하여 CIGS 박막을 증착하는 3-stage 방법이 널리 이용된다[1]. 3-stage 중 1st-stage에서는 In, Ga, Se 원소 만을 증발시켜 $(In,Ga)_2Se_3$ 전구체 (precursor) 박막을 성장시킨다. 고효율의 CIGS 태양전지를 위해서는 $(In,Ga)_2Se_3$ 전구체 증착의 공정 변수와 이에 따른 박막 특성의 이해가 중요하다. 본 연구에서는 Mo 박막이 증착된 소다석회유리 (soda lime glass) 기판에 동시증발장비를 이용하여 280 380 의 기판 온도에서 In, Ga, Se 물질을 증발시켜 $(In,Ga)_2Se_3$/Mo/glass 시료를 제작하였으며 XRD, SEM, EDS 등의 방법을 이용하여 특성을 분석하였다. XRD 분석 결과 기판 온도 $280{\sim}330^{\circ}C$에서는 $(In,Ga)_2Se_3$ 박막의 (006), (300) 피크가 관찰되었으며, 기판 온도가 증가할수록 (006) 피크 세기는 감소하였고 (300) 피크 세기는 증가하였다. $380^{\circ}C$에서는 (110)을 포함한 다수의 피크가 관찰되었다. 그레인 (grain) 크기는 기판 온도가 증가할수록 커지며 Ga/(In+Ga) 조성비는 기판 온도에 따라 일정함을 각각 SEM과 EDS 측정을 통해 알 수 있었다. $(In,Ga)_2Se_3$ 전구체의 (300) 배향은 CIGS 박막의 (220/204) 배향을 촉진하고[2], 이것은 높은 광전변환효율에 기여하는 것으로 알려져 있다. 때문에 $(In,Ga)_2Se_3$의 (300) 피크의 세기가 가장 큰 조건인 $330^{\circ}C$를 1st-stage 증착 온도로 하여 3-stage CIGS 태양전지 공정을 수행하였으며, $MgF_2$/Al/Ni/ITO/i-ZnO/CdS/CIGS/Mo/glass 구조의 셀에서 광전변환효율 16.96%를 얻었다.

  • PDF

Effect of Se Flux and Se Treatment on the Photovoltaic Performance of β-CIGS Solar Cells

  • Kim, Ji Hye;Cha, Eun Seok;Park, Byong Guk;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.3 no.2
    • /
    • pp.39-44
    • /
    • 2015
  • $Cu(In,Ga)_3Se_5$ (${\beta}-CIGS$) has a band gap of 1.35 eV which is an optimum value for high solar-energy conversion efficiency. However, ${\beta}-CIGS$ film was not well characterized yet due to lower efficiency compared to $Cu(In,Ga)Se_2$ (${\alpha}-CIGS$). In this work, ${\beta}-CIGS$ films were fabricated by a three-stage co-evaporation of elemental sources with various Se fluxes. As the Se flux increased, the crystallinity of ${\beta}-CIGS$ phase was improved from the analysis of Raman spectroscopy and a deep-level defect was reduced from the analysis of photoluminescence spectroscopy. A Se treatment of the ${\beta}-CIGS$ film at $200^{\circ}C$ increased Ga content and decreased Cu content at the surface of the film. With the Se treatment at $200^{\circ}C$, the cell efficiency was greatly improved for the CIGS films prepared with low Se flux due to the increase of short-circuit current and fill factor. It was found that the main reason of performance improvement was lower Cu content at the surface instead of higher Ga content.

The study of growth and characterization of CuGaSe$_2$ single crystal thin films by hot wall epitaxy (HWE(Hot wall epitaxy)에 의한 CuGaSe$_2$단결정 박막 성장과 특성에 관한 연구)

  • 홍광준;백형원
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.189-198
    • /
    • 2000
  • The stochiometric mixture of evaporating materials for the $CuGaSe_2$single crystal thin films were prepared from horizontal furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal $CuGaSe_2$, it was found tetragonal structure whose lattice constant $a_0}$ and $c_0$ were 5.615 $\AA$ and 11.025 $\AA$, respectively. To obtains the single crystal thin films, $CuGaSe_2$mixed crystal was deposited on throughly etched GaAs(100) by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $610^{\circ}C$ and $450^{\circ}C$ respectively, and the growth rate of the single crystal thin films was about 0.5$\mu\textrm{m}$/h. The crystalline structure of single crystal thin films was investigated by the double crystal X-ray diffraction (DCXD). Hall effect on this sample was measured by the method of van der Pauw and studied on carrier density and mobility depending on temperature. From Hall data, the mobility was likely to be decreased by pizoelectric scattering in the temperature range 30 K to 150 K and by polar optical scattering in the temperature range 150 K to 293 K. The optical energy gaps were found to be 1.68 eV for CuGaSe$_2$sing1e crystal thin films at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation then the constants in the Varshni equation are given by $\alpha$ = $9.615{\times}10^{-4}$eV/K, and $\beta$ = 335 K. From the photocurrent spectra by illumination of polarized light of the $CuGaSe_2$single crystal thin films. We have found that values of spin orbit coupling $\Delta$So and crystal field splitting $\Delta$Cr was 0.0900 eV and 0.2498 eV, respectively. From the PL spectra at 20 K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be 0.0626 eV and the dissipation energy of the acceptor-bound exciton and donor-bound exciton to be 0.0352 eV, 0.0932 eV, respectively.

  • PDF

Optical properties and Growth of CuAlSe$_2$ Single Crystal Thin Film by Hot Wal1 Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 $CuAlSe_2$ 단결정 박막 성장과 점결함 특성)

  • Hong, Kwang-Joon;Yoo, Sang-Ha
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.76-77
    • /
    • 2005
  • Single crystal $CuAlSe_2$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at 410$^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $CuAlSe_2$ source at $680^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence(PL) and double crystal X-ray diffraction (DCXO). The temperature dependence of the energy band gap of the $CuAlSe_2$ obtained from the absorpt ion spectra was wel1 described by the Varshni's relation, $E_g$(T) = 2.8382 eV - ($8.86\times10^{-4}$ eV/H)$T_2$/(T + 155K). After the as-grown single crystal $CuAlSe_2$ thin films were annealed in Cu-, Se-, and Al-atmospheres, the origin of point defects of single crystal $CuAlSe_2$ thin films has been investigated by PL at 10 K. The native defects of $V_{cd}$, $V_{se}$, $Cd_{int}$, and $Se_{int}$ obtained by PL measurements were classified as donors or acceptors. And we concluded that the heat-treatment in the Cu-atmosphere converted single crystal $CuAlSe_2$ thin films to an optical n-type. Also. we confirmed that hi in $CuAlSe_2$/GaAs did not form the native defects because Al in single crystal $CuAlSe_2$ thin films existed in the form of stable bonds.

  • PDF

New fabrication of CIGS crystals growth by a HVT method (새로운 HVT 성장방법을 이용한 CIGS 결정성장)

  • Lee, Gang-Seok;Jeon, Hun-Soo;Lee, Ah-Reum;Jung, Se-Gyo;Bae, Seon-Min;Jo, Dong-Wan;Ok, Jin-Eun;Kim, Kyung-Hwa;Yang, Min;Yi, Sam-Nyeong;Ahn, Hyung-Soo;Bae, Jong-Seong;Ha, Hong-Ju
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.3
    • /
    • pp.107-112
    • /
    • 2010
  • The Cu$(In_{1-x}Ga_x)Se_2$ is the absorber material for thin film solar cell with high absorption coefficient of $1{\times}10^5cm^{-1}$. In the case of CIGS, the movable energy band gap from $CuInSe_2$ (1.00 eV) to $CuGaSe_2$ (1.68 eV) can be acquired while controlling Ga contain ratio. Generally, the co-evaporator method have used for development and fabrication of the CIGS absorption layer. However, this method should need many steps and lengthy deposition time with high temperature. For these reasons, in this paper, a new growth method of CIGS layer was attempted to hydride vapor transport (HVT) method. The CIGS mixed-source material reacted for HCl gas in the source zone was deposited on the substrate after transporting to growth zone. c-plane $Al_2O_3$ and undoped GaN were used as substrates for growth. The characteristics of grown samples were measured from SEM and EDS.

Effect of Moisture on Cu(In,Ga)Se2 Solar Cell with (Ga,Al) Co-doped ZnO as Window Layer ((Ga,Al)이 도핑된 ZnO를 투명전극으로 가진 Cu(In,Ga)Se2 태양전지에 수분이 미치는 영향)

  • Yang, So Hyun;Bae, Jin A;Song, Yu Jin;Jeon, Chan Wook
    • Current Photovoltaic Research
    • /
    • v.5 no.4
    • /
    • pp.135-139
    • /
    • 2017
  • We fabricated two different transparent conducting oxide thin films of ZnO doped with Ga ($Ga_2O_3$ 0.9 wt%) as well as Al ($Al_2O_3$ 2.1 wt%) (GAZO) and ZnO doped only with Al ($Al_2O_3$ 3 wt%) (AZO). It was investigated how it affects the moisture resistance of the transparent electrode. In addition, $Cu(In,Ga)Se_2$ thin film solar cells with two transparent oxides as front electrodes were fabricated, and the correlation between humidity resistance of transparent electrodes and device performance of solar cells was examined. When both transparent electrodes were exposed to high temperature distilled water, they showed a rapid increase in sheet resistance and a decrease in the fill factor of the solar cell. However, AZO showed a drastic decrease in efficiency at the beginning of exposure, while GAZO showed that the deterioration of efficiency occurred over a long period of time and that the long term moisture resistance of GAZO was better.