• 제목/요약/키워드: Cu(In,Ga)$Se_2$ 박막형 태양전지

검색결과 40건 처리시간 0.028초

반응성 스퍼터의 Se Cracker Reservoir Zone 온도에 따른 특성분석

  • 김주희;박래만;김제하
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.585-585
    • /
    • 2012
  • $Cu(In_{1-x}Ga_x)Se_2$(CIGS) 박막 태양전지는 Chalcopyrite 계 박막 태양전지로 Cu, In, Ga, Se 각 원소의 조성을 적절히 조절하여 박막을 성장시킨다. 성장시킨 CIGS 박막은 광흡수계수가 $10^5cm^{-1}$로 다른 물질보다 뛰어나고 직접 천이형 반도체로서 얇은 두께로도 고효율의 박막 제작이 가능하다. CIGS 태양전지를 제조하는 방법은 3-stage 동시 증착법, 금속 전구체의 셀렌화 공정법, 전기 증착법 등이 있다. 그 중에 금속 전구체의 셀렌화 공정법은 다른 제조 방법에 비해 대면적 생산에 유리한 장점이 있다. 하지만 아직 상대적으로 3-stage 동시 증착법에 비해 낮은 에너지 변환 효율이 보고된다. 본 실험에서는 기존의 금속 전구체의 셀렌화 공정법과는 달리 전구체 증착과 셀렌화 공정을 동시에 하고, Se cracker를 통하여 Se 원료를 주입하는 방식인 반응성 스퍼터링 공정에서 reservoir zone의 온도 변화에 따른 특성을 분석하였다. Se cracker의 reservoir zone 온도가 증가할수록 Cu/(In+Ga) 비가 증가한다. CIGS 박막 태양전지의 구조는 Al/Ni/ITO/i-ZnO/CdS/CIGS/Mo/Soda lime glass이다. CIGS 박막의 조성비가 Cu/(In+Ga)=0.89, Ga/(In+Ga)=0.17인 박막 태양전지에서 개방전압 0.34 V, 단락전류밀도 $32.61mA/cm^2$, 충실도 56.2% 그리고 변환 효율 6.19%를 얻었다. 본 연구는 2011년도 지식경제부의 재원으로 한국에너지 기술평가원(KTEP)의 지원을 받아 수행한 연구 과제입니다(No.20093020010030).

  • PDF

Cu계 $I-III-VI_2$ 화합물 박막 태양전지 연구 (A Study on the Cu-based $I-III-VI_2$ Compound Thin Film Solar Cells)

  • 윤재호;안세진;김석기;이정철;송진수;안병태;윤경훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.109-112
    • /
    • 2005
  • Cu계$I-III-VI_2$화합물은 직접천이형 반도체로 광흡수계수가 매우 높아 박막형 태양전지 제조에 매우 유리하다 또한 화학적으로 안정하며 Ga, A1등을 첨가하면 에너지 금지대폭을 조절할 수 있어 Wide Bandgap 태양전지 및 탠덤구조 태양전지를 제조하기에도 용이하다. $CuInSe_2(CIS)$ 물질에서 In을 $20-30\%$ 정도 치환한 $Cu(In,\;Ga)Se_2(CIGS)$ 태양전지의 경우 $19.5\%$의 세계 최고 효율을 보고하고 있으며 이는 다결정 실리콘 태양전지의 효율과 비슷한 수준이다. 본 연구에서는 동시 진공증발법을 이용하여 증착한 CIGS 박막 및 $CuGaSe_2(CGS)$ 박막을 이용하여 태양전지를 제조하였다. 공정의 재현성 및 결정립계가 큰 광흡수층 제조를 위하여 실시간 기판 온도 모니터링 시스템을 도입하였으며 버퍼층으로는 용액성장한 CdS 박막을 사용하였다. SLG/MO/CIGS(CGS)/CdS/ZnO/Al구조의 태양전지를 제조하여 면적 $0.5cm^2$에서 각각 $15\%$(CIGS)와 $7\%(CGS)$의 효율을 얻었다.

  • PDF

$CulnSe2$계 화합물 박막 태양전지 연구 (A Study on the Cu-based $I-III-VI_2$ Compound Thin Film Solar Cells)

  • 윤재호;안세진;김석기;이정철;송진수;김기환;안병태;윤경훈
    • 신재생에너지
    • /
    • 제1권2호
    • /
    • pp.6-10
    • /
    • 2005
  • [ $CulnSe2$ ]계 화합물은 직접천이형 반도체로 광흡수계수가 매우 높아 박막형 태양전지 제조에 매우 유리하다. 또한 화학적으로 안정하며 Ga, Al 등을 첨가하면 에너지 금지대폭을 조절할 수 있어 Wide Bandgap 태양전지 및 탠덤구조 태양전지를 제조하기에도 용이하다. CIS 물질에서 In을 $20-30\%$ 정도 치환한 $Cu(In,\;Ga)Se_2(CIGS)$ 태양전지의 경우 19.5%의 세계 최고 효율을 보고하고 있으며 이는 다결정 실리콘 태양전지의 효율과 비슷한 수준이다. 본 연구에서는 동시 질공증발법을 이용하여 증착한 CIGS 박막 및 $CuGaSe_2(CGS)$ 박막을 이용하여 태양전지를 제조하였다. 공정의 재현성 및 결정립계가 큰 광흡수층 제조를 위하여 실시간 기판 온도 모니터링 시스템을 도입하였으며 버퍼층으로는 용액성장한 CdS 박막을 사용하였다. SLG/MO/CIGS(CGS)/CdS/ZnO/Al 구조의 태양전지를 제조하여 면적 $0.5cm^2$에서 각각 $17\%(CIGS)$$7\%(CGS)$의 효율을 얻었다.

  • PDF

화합물 반도체 Cu(InGa)Se2박막 태양전지의 제작과 태양광발전 활용

  • 김제하;정용덕;배성범;박래만;한원석;조대형;이진호;이규석;김영선;오수영
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.8.2-8.2
    • /
    • 2009
  • 구리(Cu)-인듐(In)-갈륨(Ga)-셀레늄(Se)의 4 원소 화합물 반도체인 Cu(InGa)$Se_2$ (CIGS) 태양전지 세계 최고 셀효율은 2008년 현재 19.9% 로서 박막형 태양전지 중 가장 높은 효율을 보이고 있다. 이는 다결정(폴리) 실리콘 태양전지의 20.3%와 대등한 수준이다. 이 CIGS 태양전지는 제조단가를 표준 결정형 실리콘 태양전지 대비 50% 대로 획기적으로 낮출 수 있어 가장 경쟁력이 있는 차세대 재료로 꼽히고 있다. 본 연구에서는 CIGS태양전지를 고진공 물리 증작법으로 제작하였으며 표면과 박막의 순도를 외부오염을 방지하기 위하여 후면전극, 광흡수체 및 전면전극을 동일 진공에서 제작할 수 있는 멀티 챔버 클러스터 증착 시스템을 이용하였다. 기판으로 소다라 임유리, 후면전극으로 Mo, 전면전극으로 I-ZnO/Al:ZnO 및 ITO를 이용하였다. 버퍼층으로 CdS를 chemical bath deposition (CBD)를 이용하였다. 소자는 무반사막을 사용하지 않고 Al/Ni전극 그리드를 이용하였다. 이 소자로부터 0.22 $cm^2$에서 16%의 효율을 얻었다. 각 박막층 간 계면의 분석을 전기적인 특성, ellisometry에 의한 광특성, 표면과 결정성에 대한 SEM 및 XRD의 특성을 보고한다. 또한, 대표적 화합물 반도체 박막 태양전지인 CIGS 태양전지의 기술의 현황, 학문적인 과제 및 실용화의 문제점을 발표하기로 한다.

  • PDF

Ga 함유량에 따른 $Cu(In_{1-x}Ga_{x})Se_2$ 박막 태양전지에 관한 연구 (A study on the CIGS thin film solar cells by Ga content)

  • 송진섭;윤재호;안세진;윤경훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.339-342
    • /
    • 2007
  • $Cu(In_{1-x}Ga_{x})Se_2$(CIGS)는 매우 큰 광흡수계수를 가지고 있으므로 박막형 태양전지의 광흡수층 재료로서 많은 연구가 진행되고 있다. 박막이 태양전지의 광흡수층으로 이용되기 위해서는 큰 결정크기와 평탄한 표면, 적당한 전기적 특성을 가져야 한다. 이러한 특성들은 CIGS 박막의 조성에 큰 영향을 받고 있는 것으로 보고되고 있다. 본 연구에서는 동시증발법을 이용하여 Cu/(In+Ga) 비를 0.9로 고정한 후 Ga 조성(Ga/(In+Ga)의 비 : 0.32, 0.49, 0.69, 0.8, 1)을 변화시켜 Wide band gap CIGS 박막태양전지를 만들었다. 기판은 soda line glass를 사용하였고 뒷면 전극으로는 Mo를 스퍼터링법으로 증착하였다. 또한 버퍼층으로는 기존에 쓰이고 있는 CdS를 CBD(Chemical Bath Deposition)법으로 층착시켰으며, 윈도우층으로는 i-ZnO/n-ZnO를 스파터링 법으로 층착하였다. 그리고 앞면전극으로는 Al을 E-beam 으로 증착하였다. 분석은 XRD, SEM, QE로 분석하였다. 위 실험에서 얻은 결과로는 Ga/(In+Ga)비가 증가할수록 Cu(In,Ga)Se2 박막은 회절 peak들이 큰 회절각으로 이동하였고, 이것은 Ga 원자와 In 원자의 원자반경의 차이에서 기인된 것으로 사료된다. 또한 Ga 조성이 증가할수록 단파장 쪽으로 이동하는 것을 볼 수 있으며, Voc가 증가하다가 에너지 밴드캡이 1.62 eV 이상에서는 Voc가 감소하는 것을 볼 수 있는데 이것은 Ga 조성이 증가할수록 에너지 밴드캡이 커지면서 defect level 이 존재하기 때문인 것으로 사료된다. Ga/(In+Ga)비가 1일 때의 변환효율은 8.5 %이고, Voc : 0.74 (V), Jsc : 17.2 ($mA/cm^{2}$), F.F : 66.6(%) 이다.

  • PDF

진공증발법을 이용한 CZTSe 광흡수층 박막 제조 및 태양전지 특성 분석

  • 정성훈;곽지혜;윤재호;안세진;조아라;안승규;신기식;윤경훈
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.42.1-42.1
    • /
    • 2011
  • 높은 광흡수 계수를 갖는Cu(In,Ga) $Se_2$ (CIGS) 화합물 박막 소재는 고효율 태양전지 양산을 위해 가장 전도유망한 재료이나 상대적으로 매장량이 적은 In 및 Ga을 사용한다는 소재적 한계가 있다. $Cu_2ZnSnSe_4$ (CZTSe) 혹은 $Cu_2ZnSnS_4$(CZTS)와 같은 Cu-Zn-Sn-Se계 화합물 반도체는 CIGS 내 희소원소인 In과 Ga이 범용원소인 Zn 및 Sn으로 대체된 소재로써 미래형 저가 태양전지 개발을 위해 활발히 연구되고 있는데, 그 화합물 조합에 따라 0.8 eV부터 1.5 eV까지의 에너지 밴드갭을 갖는 것으로 알려져 있다. 스퍼터링법에 기반한 2단계 공정에 의해 3.2%의 CZTSe 및 6.7%의 CZTS 태양전지 효율 달성이 보고된 바 있으며, 최근 비진공 방식을 이용하여 제조된 $Cu_2ZnSn(S,Se)_4$ (CZTSSe) 태양전지가 9.6%의 변환효율을 생산하여 세계 최고기록을 갱신한 바 있다. 반면, 동시진공증발법에 의한 Cu-Zn-Sn-Se계 연구는 박막 조성 조절이 상대적으로 용이하다는 장점에도 불구하고, 상대적으로 공개된 연구결과의 양이 적으며 그 효율에 대한 보고는 특히 미미하다. 본 연구에서는 동시진공증발법에 의한 CZTSe 박막 연구 결과를 바탕으로 Sn 손실을 최소화하기 위한 진공증발 공정을 최적화하였으며, 이를 통해 CZTSe 박막 태양전지를 제조하고 그 특성분석을 통해 5% 이상의 변환효율을 달성하였다.

  • PDF

Crystal structure analysis of CIGS solar cell absorber by using in-situ XRD

  • 김혜란;김용배;박승일
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.319-319
    • /
    • 2010
  • 칼코젠계 태양전지의 광흡수층으로 사용되는 CuInSe2은 직접천이형 반도체로 광흡수계수가 $1{\times}105cm-1$로 매우 높고, 전기광학적 안정성이 우수하여 실리콘 결정질 태양전지를 대체할 고효율 태양전지로 각광받고 있다. 광흡수층의 밴드갭 에너지가 증가하면 태양전지의 개방전압(Voc)이 증가하여 광변환 효율을 향상시킬 수 있으므로, CuInSe2에서 In의 일부를 Ga으로 치환하여 에너지 밴드갭의 변화를 주는 연구가 많이 진행되고 있다. 그러나 화합물내의 Ga 조성비가 증가하면 단락전류(Jsc), 충진률(fill factor)이 낮아져 태양전지 효율을 저하시키게 되므로 CIGS 박막의 적절한 화합물 조성비를 갖도록 최적조건을 확립하는 것이 매우 중요하다. 본 실험에서는 광흡수층 형성을 위해 Sputtering법으로 금속 전구체를 증착하고, 고온에서 셀렌화 열처리를 수행하는 Sequential process(2단계 증착법)를 이용하였다. soda-lime glass 기판에 Back contact으로 Mo를 증착하고, 1단계로 CuIn0.7Ga0.3 조성비의 타겟을 이용하여 Sputtering법으로 $0.5{\sim}2{\mu}m$ 두께의 CIG 전구체를 증착하였다. 2단계로 CIG 전구체의 셀렌화열처리를 통하여 CIGS 화합물 구조의 박막을 형성시켰다. 이때 형성된 CIGS 화합물 박막의 두께는 동일하게 함으로써, 열처리온도에 의한 박막의 구조변화를 비교하였다. 증착된 CIGS 박막은 고온 엑스선회절분석을 통해 증착 두께와 온도 변화에 따른 CIGS 층의 구조 변화를 확인하고, 동일한 증착조건으로 Buffer layer, Window layer, Grid 전극을 형성하여 태양전지셀 특성을 평가함으로써 CIGS 태양전지 광흡수층의 결정구조에 따른 광변환 효율을 비교하였다.

  • PDF

3-5족 적층형과 CuInGa(S,Se)2 및 Cu2ZnSn(S,Se)4 화합물반도체 박막태양전지 (III-V Tandem, CuInGa(S,Se)2, and Cu2ZnSn(S,Se)4 Compound Semiconductor Thin Film Solar Cells)

  • 정연길;박동원;이재광;이재영
    • 공업화학
    • /
    • 제26권5호
    • /
    • pp.526-532
    • /
    • 2015
  • 신 기후변화대응(Post 2020)을 위한 대체에너지의 역할과 더불어 태양전지의 중요성이 높아져 가고 있다. 태양전지의 종류는 크게 재료관점에서 보면 유기물과 무기물 계열로 구분할 수 있지만 대규모 발전역할에서는 현재까지 실리콘과 같이 양산성과 안정성 기반의 무기물 태양전지가 주된 역할을 하고 있다. 특히 최근 몇 년간 화합물반도체 태양전지에 대한 연구는 급속도로 가속화되면서 3-5족 적층형 태양전지, chalcopyrite 계열 $CuInGa(S,Se)_2$ (CIGSSe) 태양전지와 kesterite 계열 $Cu_2ZnSn(S,Se)_4$ (CZTSSe) 태양전지 연구가 대표적으로 주류를 이루어 왔다. 따라서 화합물반도체 태양전지에서 주류를 이루고 있는 3-5족 적층형, CIGSSe 및 CZTSSe 태양전지들의 연구개발동향 및 기술적인 주요내용들에 대해 소개하고자 한다.

CIGS 태양전지 용액전구체 paste공정 연구

  • 박명국;안세진;윤재호;김동환;윤경훈
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.27.1-27.1
    • /
    • 2009
  • Chalcopyrite구조의CIS 화합물은 직접천이형 반도체로서 높은 광흡수 계수 ($1\times10^5\;cm^{-1}$)와 밴드갭 조절의 용이성 및 열적 안정성 등으로 인해 고효율 박막 태양전지용 광흡수층 재료로 많은 관심을 끌고 있다. CIS 계 물질에 속하는 $Cu(InGa)Se_2$ (CIGS) 태양전지의 경우 박막 태양전지 중 세계 최고 효율인 20%를 달성한 바 있으며, 이는 기존 다결정 웨이퍼형 실리콘 태양전지의 효율에 근접하는 수치이다. 그러나 이러한 우수한 효율에도 불구하고 박막 증착시 동시증발장치 혹은 스퍼터링장치와 같은 고가 진공장비를 사용하게 되면 공정단가가 높을 뿐만 아니라 사용되는 재료의 20-50%의 손실을 감수해야만 한다. 또한 대면적 Cell제작에 어려움이 있기 때문에 기술개발 이후의 상용화 단계를 고려할 때 광흡수층 박막 제조 공정단가를 획기적으로 낮출 수 있고 대면적화가 용이한 신 공정 개발이 필수적이다. 이러한 관점에서 비진공 코팅방법에 의한 CIS 광흡수층 제조 기술은 CIS 태양전지의 저가화 및 대면적화를 가능케 하는 차세대 기술로 인식되고 있고 최근 급속한 발전을 이루고 있는 미세 입자 합성, 제어 및 응용 기술에 부합하여 많은 세계 연구기관 및 기업체에서 활발히 연구를 진행하고 있다. 비진공 방식에 의한 CIS 광흡수층 제조 기술은 전구체 물질의 형태에 따라 크게 입자형 전구체를 사용하는 방법과 용액 전구체를 사용하는 방법으로 나눌 수 있다. 본 연구에서는 용액 전구체를 paste 공정으로 실험하였다. 이는 용액전구체 물질 제조가 입자형 전구체 제조에 비해 매우 간단하고, 전구체 물질 내 구성원소의 원자비를 쉽게 조절할 수 있다는 장점 및 사용효율이 높아 소량의 source로도 박막 제작이 가능해 공정 단가 절감에 큰 효과가 기대되기 때문이다. 실험에 사용 된 용액전구체는 $Cu(NO_3)$$InCl_3$, $Ga(NO_3)$를 Cu, In, Ga 출발 물질로 선정하여 이를 메탄올에 완전히 용해시켜 binder인 셀룰로오즈와 메탄올을 섞은 용액과 혼합하여 전구체 슬러리를 형성하였다. 이 슬러리를 paste공정으로 precursor막을 입히고 저온 건조 후 Se 분위기에서 열처리하여 CIGS박막을 얻을 수 있었다. 박막의 특성을 XRD, SEM, AES, TGA등으로 분석하였다.

  • PDF

DC sputter방식으로 제조된 $Cu_2Se$ 박막의 전자빔 처리에 따른 특성 연구 (Study on electron beam treatment on $Cu_2Se$ thin films by DC sputtering method)

  • 권혁;김재웅;정승철;김동진;박인선;정채환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.53.1-53.1
    • /
    • 2011
  • 현재 태양전지시장에서 비중이 많은 실리콘 태양전지는 높은 효율에 비해 제조 단가가 비싸다는 단점을 가지고 있다. 이에 비해 칼코파라이트 구조의 $CuInSe_2$ (CIS)계 화합물은 직접 천이형 반도체로서 높은 광흡수 계수($1{\times}105cm-{\acute{e}1$)와 밴드갭 조절의 용이성 및 열적 안정성 등으로 인해 고효율 박막 태양전지용 광흡수층 재료로 많은 관심을 끌고 있다. CIS 계 물질에 속하는 Cu(InGa)$Se_2$ (CIGS) 태양전지의 경우 양산화에 sputtering방식사용하고 Showa Shell에서는 대면적 CIGS 모듈 효율 13.4%를 달성한 바 있다. 현재 CIGS는 열처리하는 방법으로 selenization 공정을 사용하는데 이 공정은 유독한 $H_2Se$ gas를 이용해야 한다는 점과 긴 시간 동안 열처리를 해야 하는 단점을 가지고 있다. 따라서 이러한 단점을 보완하기 위해 본 연구에서는 전자빔을 사용하여 후속 공정을 실시하였다. 전자빔을 사용할 경우 낮은 온도에서 precursor를 처리하며 짧은 시간에 공정이 끝난다는 장점이 있다. 본 연구에서는 sodalime glass위에 조성비(Cu 60.87% Se 38.66%)인 Cu_2Se$ target(4.002"${\times}0.123$") 을 DC sputter를 이용하여 DC power를 50W,100W를 주고 Working pressure를 20,15,10,5,3,1mtorr로 조절하여 증착하였다. 전자빔의 세기 조건을 3Kv, Rf power 200W, Ar 7sccm로 전자빔 조사 시간을 1,2,3,4,5min으로 늘려가며 최적화 실험 하였고 최적화된 조건으로 $Cu_2Se$ target에 조사 하였다. 박막의 특성평가는 전자빔 조사 전/후에 대해 XRD, SEM, XRF, Hall measurement, UV-VIS을 이용하여 분석평가를 하였다. 이 실험은 $Cu_2Se$상이 자라는 특성과 표면 상태에 따라 CIGS박막을 증착하였을 때 나타나는 효율 변화를 알아 보기위한 초기 공정 실험이다.

  • PDF