• Title/Summary/Keyword: CsV

Search Result 358, Processing Time 0.029 seconds

Effects of exploration and molecular mechanism of CsV on eNOS and vascular endothelial functions

  • Zuo, Deyu;Jiang, Heng;Yi, Shixiong;Fu, Yang;Xie, Lei;Peng, Qifeng;Liu, Pei;Zhou, Jie;Li, Xunjia
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.501-514
    • /
    • 2022
  • This study aimed to investigate the effects and potential mechanisms of Chikusetsusaponin V (CsV) on endothelial nitric oxide synthase (eNOS) and vascular endothelial cell functions. Different concentrations of CsV were added to animal models, bovine aorta endothelial cells (BAECs) and human umbilical vein endothelial cells (HUVECs) cultured in vitro. qPCR, Western blotting (WB), and B ultrasound were performed to explore the effects of CsV on mouse endothelial cell functions, vascular stiffness and cellular eNOS mRNA, protein expression and NO release. Bioinformatics analysis, network pharmacology, molecular docking and protein mass spectrometry analysis were conducted to jointly predict the upstream transcription factors of eNOS. Furthermore, pulldown and ChIP and dual luciferase assays were employed for subsequent verification. At the presence or absence of CsV stimulation, either overexpression or knockdown of purine rich element binding protein A (PURA) was conducted, and PCR assay was employed to detect PURA and eNOS mRNA expressions, Western blot was used to detect PURA and eNOS protein expressions, cell NO release and serum NO levels. Tube formation experiment was conducted to detect the tube forming capability of HUVECs cells. The animal vasodilation function test detected the vasodilation functions. Ultrasonic detection was performed to determine the mouse aortic arch pulse wave velocity to identify aortic stiffness. CsV stimulus on bovine aortic cells revealed that CsV could upregulate eNOS protein levels in vascular endothelial cells in a concentration and time dependent manner. The expression levels of eNOS mRNA and phosphorylation sites Ser1177, Ser633 and Thr495 increased significantly after CsV stimulation. Meanwhile, CsV could also enhance the tube forming capability of HUVECs cells. Following the mice were gavaged using CsV, the eNOS protein level of mouse aortic endothelial cells was upregulated in a concentration- and time-dependent manner, and serum NO release and vasodilation ability were simultaneously elevated whereas arterial stiffness was alleviated. The pulldown, ChIP and dual luciferase assays demonstrated that PURA could bind to the eNOS promoter and facilitate the transcription of eNOS. Under the conditions of presence or absence of CsV stimulation, overexpression or knockdown of PURA indicated that the effect of CsV on vascular endothelial function and eNOS was weakened following PURA gene silence, whereas overexpression of PURA gene could enhance the effect of CsV upregulating eNOS expression. CsV could promote NO release from endothelial cells by upregulating the expression of PURA/eNOS pathway, improve endothelial cell functions, enhance vasodilation capability, and alleviate vessel stiffness. The present study plays a role in offering a theoretical basis for the development and application of CsV in vascular function improvement, and it also provides a more comprehensive understanding of the pharmacodynamics of CsV.

A Study on the Fabrication of CsI(T1) Radiation Sensor and its Spectroscopic Characteristics (CsI(T1) 방사선센서의 제작 및 분광특성 연구)

  • 권수일;신동호
    • Progress in Medical Physics
    • /
    • v.13 no.1
    • /
    • pp.44-50
    • /
    • 2002
  • CsI(T1) single crystal was grown in a Bridgman growing apparatus, which has the diameter of 11 mm and the mole ratio of 0.001 mol%. Radiation sensors were made with CsITl)crystal and two photodiodes, and measured spectroscopic characteristics and linearity for gamma-ray and X-ray. The energy resolution of CsI(T1) radiation sensor has been measured with $^{22}$ Na, $^{137}$ Cs and $^{60}$ Co gamma standard sources. Also output linearity of CsITl) sensor was measured for diagnostic radiation region. The energy resolutions of CsI(T1) radiation sensor for 0.511MeV gamma-ray from Na-22 source, 0.662MeV from Cs-137 source, and 1.17MeV and 1.332MeV from Co-60 source were 13.2%, 8.3%, 6.7%, and 5.1% respectively. Also the output linearity up to 80mAs current for 60kVp, 80kvp, 100kVp, 120kVp tube voltages has been studied.

  • PDF

Development of environmentally friendly inorganic fluorescent pigments, A3V5O14 (A = K and Rb) and Cs2V4O11: Crystal structure, optical and color properties (친환경 무기 형광 안료 A3V5O14 (A = K and Rb) and Cs2V4O11 개발: 결정구조, 광학적 특성 및 착색 특성)

  • Jeong, Gyu Jin;Kim, Jin Ho;Lee, Younki;Hwang, Jonghee;Toda, Kenji;Bae, Byoungseo;Kim, Sun Woog
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.2
    • /
    • pp.47-54
    • /
    • 2020
  • To develop the bright-vivid red- and yellow-inorganic fluorescent pigments with high luminescence properties, A3V5O14 (A = K and Rb) and Cs2V4O11 inorganic pigments were synthesized by a water assisted solid state reaction (WASSR) method and a conventional solid state reaction method. Although impurity peaks corresponding to the AVO3 and AV3O8 (A = K, Rb, and Cs) were observed in all samples prepared, the trigonal structure A3V5O14 (A = K and Rb) and orthorhombic structure Cs2V4O11 were successfully obtained as a main phase. These inorganic pigments showed the broad absorption band (under 550 nm) originated from CT transitions of VO4 polyhedron, and the strong broad red- and green-emission bands due to 3T21A1 and 3T11A1 transitions of the [VO4]3- group. The A3V5O14 (A = K and Rb) and Cs2V4O11 pigments showed a bright-vivid red- and yellow-body color, where the a* values of the A3V5O14 (A = K and Rb) were +35.5 and +45.9, respectively, and b* value of Cs2V4O11 pigments was +50.3. The L* values of the A3V5O14 (A = K and Rb) and Cs2V4O11 inorganic pigments were over +45. These results indicate that the A3V5O14 (A = K and Rb) and Cs2V4O11 inorganic pigments could be an attractive candidate as a bright-vivid red- and yellow inorganic pigments.

Growth and Scintillation Characteristics of CsI(Br) Single Crystals (CsI(Br) 단결정의 육성과 섬광특성)

  • Oh, M.Y.;Jung, Y.J.;Lee, W.G.;Doh, S.H.;Kang, K.J.;Kim, D.S.;Kim, W.;Kang, H.D.
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.341-349
    • /
    • 2000
  • CsI(Br) single crystals doped with 1, 3, 5 or 10 mole% $Br^-$ ions, as an activator, were grown by Czochralski method. The lattice structure of grown CsI(Br) single crystal was bcc and its lattice constant was $4.568\;{\AA}$. The absorption edge of the CsI(Br) single crystals was observed at 243 nm. The spectral range of the luminescence excited by 243 nm of wavelength was $300{\sim}600\;nm$, and its peak emission appeared at 440 nm. The luminescence intensity was maximum when CsI(Br) was doped with 3 mole % $Br^-$ ions. The energy resolutions of the CsI(Br) scintillator doped with 3 mole % $Br^-$ ions were 15.0% for $^{137}Cs$(662 keV), 13.1% for $^{54}Mn$(835 keV), and 18.0% and 6.3% for $^{22}Na$(511 keV and 1275 keV), respectively. The decay curves had fast and slow components, and the fast component was about 41 ns independent on the concentration of the $Br^-$ ions. The time resolution of CsI(Br) scintillators decreased with increasing of the concentration of $Br^-$ ions.

  • PDF

Scintillation Characteristics of CsI(Li) Single Crystals (CsI(Li) 단결정의 섬광특성)

  • Lee, W.G.;Doh, S.H.;Ro, T.I.;Kim, W.;Kang, H.D.;Moon, B.S.
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.359-367
    • /
    • 1999
  • CsI(Li) single crystals doped with 0.02, 0.1, 0.2 and 0.3 mole% lithium as an activator were grown by Czochralski method. The lattice structure of grown CsI(Li) single crystal was bcc, its lattice constant was $4.568\;{\AA}$. The absorption edge of CsI(Li) single crystal was 245 nm, and the spectral range of luminescence was $300{\sim}600\;nm$, its maximum luminescence intensity appeared at 425 nm. The energy resolutions of CsI(Li) single crystal doped with 0.2 mole% lithium were 14.5% for $^{137}Cs$(662 keV), 11.4% for $^{54}Mn$(835 keV) and 17.7% and 7.9% for $^{22}Na$(511 keV and 1275 keV), respectively. The relation formula of $\gamma$-ray energy versus energy resolution was ln (FWHM%) = -0.893lnE + 8.456 and energy calibration formula was ${\log}E_r=1.455\;{\log}(ch.)-1.277$. The phosphorescence decay time of CsI(Li) crystal doped with 0.2 mole% lithium was 0.51 s at room temperature, and its time resolution measured by CFT(constant-fraction timing method) was 9.0 ns.

  • PDF

Desorption Efficiency of Various Cosolvents for Organic Solvent Mixtures Collected on Activated Charcoal Tube (활성탄관에 포집된 혼합 유기용제의 보조탈착용매 변화에 따른 탈착률 비교)

  • Kim, Kang Yoon;Ro, In Bong;Kim, Hyun Wook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.2
    • /
    • pp.209-221
    • /
    • 1996
  • The purpose of this study was to find a suitable cosolvent to $CS_2$ so that desorption efficiency can be improved for both polar and non-polar organic solvent mixtures collected on an activated charcoal tube. Cosolvents added to $CS_2$ include: DMF(N,N-dimethylformamide): $CS_2$ (v/v 1:99), DMF:$CS_2$(v/v 3:97), BC (butyl carbitol, 2-(2-butoxy ethoxy) ethanol):$CS_2$(v/v 1:99), and BC:$CS_2$(v/v 3:97)). The results obtained were as follows : 1. Comparing the desorption efficiency of $CS_2$ with those of $CS_2$ with 1, 3, 5 % DMF and 1, 3 % BC cosolvents for two different groups of charcoal tubes each containing 8 different polar and non-polar organic solvents with 3 different concentration levels, the desorption efficiencies of the cosolvent-added $CS_2$ increased significantly for all polar organic solvents regardless of concentration levels tested. For non-polar organic solvents, no noticeable improvement was detected except xylene and trichloroethylene. The desorption efficiency of xylene increased significantly while that of trichloroethylene increased significantly at the lowest concentration level tested. 2. Either 5 % DMF or 3 % BC was the most suitable cosolvent because the desorption efficiency for non-polar organic solvent mixtures was similar or slightly improved compared with that of $CS_2$, while those of for polar organic solvent mixtures were above 75 % except for cyclohexanone. 3. The smallest variations in desorption efficiency represented by the ratio calculated from the maximum to minimum desorption efficiency for all concentration levels tested were found when 3 % BC was used as a cosolvent. The above results indicate that the desorption efficiency of $CS_2$ particularly for polar organic solvent mixtures collected on a charcoal tube can be significantly improved by the use of cosolvents such as 5 % DMF or 3 % BC. A caution, however, is in order for selecting a cosolvent whenever the cosolvent itself is being used in the workplace or the impurities contained in the cosolvent may interfere with the analytical results. In addition, to improve desorption efficiencies for such organic solvents as cyclohexanone or ketones, it is recommended to use suitable collection and desorption media other than the traditional method of charcoal tube collection/$CS_2$ desorption.

  • PDF

Removal of Cs by Adsorption with IE911 (Crystalline Silicotitanate) from High-Radioactive Seawater Waste (IE911 (crystalline silicotitanate) 의한 고방사성해수폐액으로부터 Cs의 흡착 제거)

  • Lee, Eil-Hee;Lee, Keun-Young;Kim, Kwang-Wook;Kim, Ik-Soo;Chung, Dong-Yong;Moon, Jei-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.3
    • /
    • pp.171-180
    • /
    • 2015
  • This study was performed on the removal of Cs, one of the main high- radioactive nuclides contained in the high-radioactive seawater waste (HSW), by adsorption with IE911 (crystalline silicotitanate type). For the effective removal of Cs and the minimization of secondary solid waste generation, adsorption of Cs by IE911 (hereafter denoted as IE911-Cs) was effective to carry out in the m/V (ratio of absorbent weight to solution volume) ratio of 2.5 g/L, and the adsorption time of 1 hour. In these conditions, Cs and Sr were adsorbed about 99% and less than 5%, respectively. IE911-Cs could be also expressed as a Langmuir isotherm and a pseudo-second order rate equation. The adsorption rate constants (k2) were decreased with increasing initial Cs concentrations and particle sizes, and increased with increasing ratios of m/V, solution temperatures and agitation speeds. The activation energy of IE911-Cs was about 79.9 kJ/mol. It was suggested that IE911-Cs was dominated by a chemical adsorption having a strong bonding form. From the negative values of Gibbs free energy and enthalpy, it was indicated that the reaction of IE911-Cs was a forward, exothermic and relatively active at lower temperatures. Additionally, the negative entropy values were seen that the adsorbed Cs was evenly distributed on the IE911.

Optimization of Conditions for the Preparation of W/O Emulsion Containing Eugenolchitosan (Eugenolchitosan 함유 유중수적형 유화 형성 조건 최적화)

  • Kim, Je-Jung;Chang, Pahn-Shick;Jung, Byung-Ok;Park, Dong-Ki
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.423-428
    • /
    • 2003
  • Stabilities of W/O emulsions containing eugenolchitosan (EuCs) prepared from chitosan and eugenol were compared to determine the optimal conditions for the ratio of water (core phase) to corn oil (continuous phase), the concentration of EuCs, storage temperature, and the extent of homo-mixing. The optimal ratio of water to corn oil was 2:3 (w/w). The effects of EuC concentrations, and singular vs. binary system of emulsifiers on the storage stability of the emulsion were investigated with EuCs and polyoxyethylene sorbitan monolaurate. The emulsion was stable, showing more than 95% emulsion stability index (ESI) value, when the concentration of EuCs was more than 0.18% (w/v). ESI value of binary emulsifier system was almost equal to that of singular emulsifier system at the concentration of 0.18% (w/v). At this singular emulsifier system, the W/O emulsion formed by EuCs had ESI value of 100%. The optimal concentration of EuCs was determined as 0.18% (w/v). The highest stability of the emulsion was obtained from the homo-mixing at 11,000 rpm for 10 sec and the storage temperature ranging $25{\sim}65^{\circ}C$. EuCs produced from this study was mutagenecity-negative on Ames test and contained no heavy metal ions.

$Cs^+$이온 반응성 산란에 의한 Si(111)-7$\times$7 표면에서의 산소 흡착 연구

  • Kim, Gi-Yeo;Kang, Heon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.153-153
    • /
    • 2000
  • Si 산화는 반도체 공정상 필요한 과정으로 산업적으로나 학문적으로 중요하고 많이 연구되었다. 이중에서 Si(1110-7x7표면에서 초기 흡착된 산소는 준안정적 상태로 존재하며 표면온도, 산소의 노출량 그리고 진공도에 따라 그 수명이 제한된다. 이러한 준안정적 상태의 산소의 화학적 성질은 여러 표면분석장비가 동원되어 연구되었으나 아직까지 논쟁이 되고 있다. 이 경우 산소가 어떤 상태로 존재하는가는 표면화학종을 검출함으로서 해결될 수 있다. 저에너지 Cs+ 이온 반응성 산란은 이러한 요구를 충족시킬수 있는 가장 적합한 실험 방법중의 하나이다. 저에너지 Cs+ 이온 산란의 특징 중의 하나는 입사된 Cs+ 이온이 표면에 흡착된 화학종과 충돌후 탈착되면서 반응을 하여 송이 이온을 형성한다는 것이다. 이 송이 이온을 관측함으로서 표면에 존재하는 화학종을 알아 낼 수 있다. 이에 산소가 흡착된 Si(111)-7x7 표면에서의 산소의 준안정적 상태가 저에너지 Cs+ 이온 산란 실험을 통하여 연구되었다. 실험은 0.2-2L(1Langmuir = 10-6 Torr x 1 sec) 산소 노출량과 -15$0^{\circ}C$ - $25^{\circ}C$의 표면온도 그리고 5eV - 20eV의 Cs+ 이온 충돌에너지에서 CsSiO+ 이온이 유일한 생산물로서 검출되었다. CsSiO+ 이온은 입사된 Cs+ 이온과 표면에 존재하는 SiO 분자가 충돌 후 반응하여 탈착된 것으로 생각된다. 이것은 낮은 산소 노출량 즉, 초기 산화 단계에서 SiO가 표면에 존재한다는 것을 의미한다. 즉, 산소 분자는 산화단계의 초기에 해리되어 표면에 흡착되고 선구물질인 SiO를 형성함을 제시한다. 최근의 이론적 계산인 density functional calculation에서도 산소분자가 Si(111)-7$\times$7 표면의 준안정적 산화상태의 선구물질일 가능성을 배제한다. 이는 본 저에너지 Cs+ 이온 반응성 산란실험을 뒷받침하는 계산 결과이다. 높은 Cs+ 이온 충돌에너지에서 CsSi+, Si+, SiO+, Si2+, Si2O+ 등이 추가로 검출되었다. 이는 CsSi 이온을 제외하고 수 keV의 충돌에너지를 사용하는 이차 이온 질량 분석법과 비슷한 결과이다.

  • PDF

A Study on Characteristics of Organic Light-Emitting Device with Various Cathodes (음극전극의 종류에 따른 유기발광소자의 특성에 관한 연구)

  • 노병규;김중연;오환술
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.37-40
    • /
    • 2000
  • This paper has been studied on characteristics of organic light-emitting device with various cathode materials. These catode materials were Al:Li(5%), Al, Cu, CsF/Al. And in these devices, HTL(hole transfer layer) was TPD and EML(emitting layer) was Alq$\sub$3/. We studied the I-V characteristics for each device. And then, the turn-on voltage of device for Al-Li(5%), Al, Cu, CsF/Al cathode were 7, 9, 13, 3V respectively. So, the CsF/Al cathode is superior to other cathode materials for I-V characteristics.

  • PDF