• Title/Summary/Keyword: Cs Sr

Search Result 244, Processing Time 0.051 seconds

A Study of Physicochemical Characteristics and Adsorption properties of Cs and Sr of Natural Zeolite from Kuryongpo in Korea (한국 구룡포산 천연 제올라이트의 이화학적 특성 및 Cs과 Sr 흡착 특성 연구)

  • Bayarsaikhan Battsetseg;Hu Sik Kim;Hyeon Uk Choo;Jong Sam Park;Woo Taik Lim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.2
    • /
    • pp.117-124
    • /
    • 2023
  • X-ray diffraction analysis, X-ray fluorescence analysis, thermal differential and thermos gravimetric analysis, cation exchange capacity analysis, and Cesium (Cs), Strontium (Sr) adsorption experiments were performed to investigate the physical and chemical properties of natural zeolite from Guryongpo in Korea. As a result of X-ray diffraction analysis, minerals such as mordenite, heulandite, clinoptilolite, and illite are contained, and as a result of X-ray fluorescence analysis, elements such as SiO2, Al2O3, CaO, K2O, MgO, Fe2O3 and Na2O are contained, and the cation exchange capacity was 148.6 meq/100 g. As a result of thermal differential and thermos gravimetric analysis, it was confirmed that the thermal stability was excellent up to 600 ℃. As a result of the adsorption equilibrium experiment over time, the equilibrium was reached within 30 min. for Cesium (Cs) and within 8 hr. for Strontium (Sr), and the adsorption rates of Cesium (Cs) and Strontium (Sr) were 80% and 18%, respectively. As a result of the single-component isothermal adsorption experiment, in conformed to the Langmuir model, and the maximum Cesium (Cs) adsorption amount was 131.5 mg/g, which was high, while the Strontium (Sr) maximum adsorption amount was 29.5 mg/g, which was low. In the case of the natural zeolite used in this study, the content of minerals including 8-rings such as clinoptilolite, heulandite, and mordenite is high, showing high selectivity for Cesium (Cs).

The Measurement of Radionuclides Concentration Ratio of the Aquatic Animal using the Chinese Minnow(Rhynchocypris Oxycephalus) (버들치를 이용한 수중 동물의 방사성동위원소 전이계수 측정)

  • Jun, In;Lim, Kwang-Muk;Choi, Yong-Ho;Keum, Dong-Kwon;Park, Doo-Won;Han, Mun-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.3
    • /
    • pp.215-220
    • /
    • 2010
  • An experiment measuring the concentration ratios of $^{137}Cs$ and $^{85}Sr$ in fish as an index aquatic animal was performed. The species was Chinese minnow (Rhynchocypris Oxycephalus), a Korean native freshwater species. Chinese minnows were reared in acryl aquarium which was 45 cm wide, 85 cm long and 50 cm high. Water in the aquarium was successively purified using filtering devices attached on the floor and the wall. Fish powder in a particulate form was supplied twice a day for feeding. After a radioactive solution was added to make the initial water concentrations approximately $0.02\;{\mu}Ci/l$ and $0.1\;{\mu}Ci/l$ for $^{137}Cs$ and $^{85}Sr$, respectively, the fish and water were sampled 10 times for a month. The concentration ratios were measured to be $0.348lkg^{-1}\sim13.906lkg^{-1}$ for $^{137}Cs$ and $0.474lkg^{-1}\sim13.089lkg^{-1}$ for $^{85}Sr$.

Installation Study of Gamma-ray Irradiation Systems Using Cs-137 and Co-60 Sources (Cs-137 및 Co-60감마선 조사장치 설치 연구)

  • Kim, Wuon-Shik;Hah, Suck-Ho;Hwang, Sun-Tae
    • Journal of Radiation Protection and Research
    • /
    • v.11 no.2
    • /
    • pp.123-129
    • /
    • 1986
  • Using Cs-137 and Co-60 gamma-ray irradiation systems, the buildup factors for 2.9 cm thick lead absorber and the air scattering factors are determined for different beam solid angles from$2.4{\pi}{\times}10^{-3}sr\;to\;17.3{\pi}{\times}10^{-3}sr$. The corresponding buildup factors are turned out to be the values from 1.054 to 1.194 and the scattering factors to be the values from 1 to 1.064, respectively. To verify our results, calculated values using these factors and experimental values are compared. The differences between them are not more than 3. 3%.

  • PDF

SEPARATION OF STRONTIUM AND CESIUM FROM TERNARY AND QUATERNARY LITHIUM CHLORIDE-POTASSIUM CHLORIDE SALTS VIA MELT CRYSTALLIZATION

  • WILLIAMS, AMMON N.;PACK, MICHAEL;PHONGIKAROON, SUPATHORN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.867-874
    • /
    • 2015
  • Separation of cesium chloride (CsCl) and strontium chloride ($SrCl_2$) from the lithium chloride-potassium chloride (LiCl-KCl) salt was studied using a melt crystallization process similar to the reverse vertical Bridgeman growth technique. A ternary $SrCl_2-LiCl-KCl$ salt was explored at similar growth rates (1.8-5 mm/h) and compared with CsCl ternary results to identify similarities. Quaternary experiments were also conducted and compared with the ternary cases to identify trends and possible limitations to the separations process. In the ternary case, as much as 68% of the total salt could be recycled per batch process. In the quaternary experiments, separation of Cs and Sr was nearly identical at the slower rates; however, as the growth rate increased, $SrCl_2$ separated more easily than CsCl. The quaternary results show less separation and rate dependence than in both ternary cases. As an estimated result, only 51% of the total salt could be recycled per batch. Furthermore, two models have been explored to further understand the growth process and separation. A comparison of the experimental and modeling results reveals that the nonmixed model fits reasonably well with the ternary and quaternary data sets. A dimensional analysis was performed and a correlation was identified to semipredict the segregation coefficient.

Characterization of the Purified Ca-type Bentonil-WRK Montmorillonite and Its Sorption Thermodynamics With Cs(I) and Sr(II)

  • Seonggyu Choi;Bong-Ju Kim;Surin Seo;Jae-Kwang Lee;Jang-Soon Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.427-438
    • /
    • 2023
  • Thermodynamic sorption modeling can enhance confidence in assessing and demonstrating the radionuclide sorption phenomena onto various mineral adsorbents. In this work, Ca-montmorillonite was successfully purified from Bentonil-WRK bentonite by performing the sequential physical and chemical treatments, and its geochemical properties were characterized using X-ray diffraction, Brunauer-Emmett-Teller analysis, cesium-saturation method, and controlled continuous acid-base titration. Further, batch experiments were conducted to evaluate the adsorption properties of Cs(I) and Sr(II) onto the homoionic Ca-montmorillonite under ambient conditions, and the diffuse double layer model-based inverse analysis of sorption data was performed to establish the relevant surface reaction models and obtain corresponding thermodynamic constants. Two types of surface reactions were identified as responsible for the sorption of Cs(I) and Sr(II) onto Ca-montmorillonite: cation exchange at interlayer site and complexation with edge silanol functionality. The thermodynamic sorption modeling provides acceptable representations of the experimental data, and the species distributions calculated using the resulting reaction constants accounts for the predominance of cation exchange mechanism of Cs(I) and Sr(II) under the ambient aqueous conditions. The surface complexation of cationic fission products with silanol group slightly facilitates their sorption at pH > 8.

Effect of Simultaneous K and Ca Application to Paddy Soil on the Uptake of Radiocaesium and Radiostrontium by Rice (논토양에 대한 K와 Ca의 동시처리가 벼의 Radiocaesium과 Radiostrontium 흡수에 미치는 영향)

  • Choi, Yong-Ho;Lim, Kwang-Muk;Jun, In;Keum, Dong-Kwon;Kim, In-Gyu
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.2
    • /
    • pp.90-95
    • /
    • 2012
  • A radio-tracer experiment was performed in a greenhouse to investigate the effectiveness of the simultaneous application of K and Ca as a countermeasure for reducing the radiocaesium and radiostrontium uptake by rice. Paddy soil (loam of pH 6.5) in soil boxes was spiked with $^{137}Cs$ and $^{85}Sr$, and treated with K and Ca in the forms of KCl and $Ca(OH)_2$, respectively, at agrochemical grades before transplanting. For the seeds of the control plants, soil-to-plant transfer factors (TF, $m^2\;kg^{-1}-dry$) of $^{137}Cs$ and $^{85}Sr$ were $7.4{\times}10^{-5}$ and $2.1{\times}10^{-4}$, respectively, whereas the corresponding values for the straws were $2.6{\times}10^{-4}$ and $2.2{\times}10^{-2}$, respectively. The TF values of $^{137}Cs$ and $^{85}Sr$ kept decreasing as the level of the simultaneous application of K and Ca (K/Ca, $g\;m^{-2}$) increased up to 33.6/322 and 48.0/460, respectively. The maximum rate of the decrease was around 60% for both radionuclides. Nearly 60% reduction in the TF value of $^{85}Sr$ was observed even at the dosage of 33.6/322, which was considered the optimum dosage based on crop productivity as well as reduction in the radiocaesium and radiostrontium uptake by rice. The optimum dosage may depend on various factors so further experiments need to be made for many different conditions.