• 제목/요약/키워드: Cs이 치환된 헤테로폴리산

검색결과 2건 처리시간 0.015초

Alkylation of Isobutane with 1-Butene over Heteropoly Acid Catalysts (헤테로폴리산 촉매상에서 1-부텐에 의한 i-부탄의 알킬화반응)

  • Hong, Sung Hee;Lee, Wha Young;Song, In Kyu
    • Applied Chemistry for Engineering
    • /
    • 제8권2호
    • /
    • pp.211-219
    • /
    • 1997
  • Liquid or gas phase alkylation of isobutane with 1-butene for i-octane production was carried out over Cs- or $NH_4$-exchanged $H_3PW_{12}O_{40}$. Pretreatment temperature of the catalyst played an important role on the catalytic activity of heteropoly acids in the liquid phase alkylation. Cation-exchanged $H_3PW_{12}O_{40}$ showed a better total yield and i-octane selectivity than the mother acid in the liquid phase alkylation, and $(NH_4)_{2.5}H_{0.5}PW_{12}O_{40}$ was more efficient than $Cs_{2.5}H_{0.5}PW_{12}O_{40}$ in terms of i-octane selectivity. It was found that the acidic property (deactivation of acid sites) of the catalyst was closely related to the catalytic activity of Cs- or $NH_4$-exchanged $H_3PW_{12}O_{40}$ in the gas phase alkylation. $C_5-C_7$ were mainly formed in the early stage of gas phase alkylation due to the strong acidic property of the catalyst, whereas $C_8$ and $+C_9$ were mainly produced as the reaction proceeded due to the deactivation of acid sites. $Cs_{2.5}H_{0.5}PW_{12}O_{40}$ showed the highest total yield in the gas phase alkylation among the catalysts examined.

  • PDF

Stabilization of Covalently Cross-Linked SPEEK/Cs-Substituted HPA Composite Membranes for Water Electrolysis ($Cs^+$치환에 따른 수전해용 공유가교 SPEEK/HPA 복합막의 안정화)

  • Jee, Bong-Chul;Ha, Sung-In;Song, Min-Ah;Chung, Jang-Hoon;Moon, Sang-Bong;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • 제22권1호
    • /
    • pp.1-12
    • /
    • 2011
  • To improve the mechanical properties, such as durabilities and antioxidative characteristics, the covalently cross-linked (CL-) SPEEK (sulfonated polyether ether ketone)/Cs-substituted HPA (heteropoly acid) organic-inorganic composite membranes (CL-SPEEK/Cs-HPAs), have been intensively investigated. The composite membrane were prepared by blending cesium-substituted HPAs (Cs-HPAs), including tungstophosphoric acid (TPA), molybdophosphoric acid (MoPA), and tungstosilicic acid (TSiA) with cross-linking agent content of 0.01 mL. And composite electrolytes composed of Cs-HPAs, prepared by immersion (imm.) and titration (titr.) methods to increase the stability of HPAs in water, were applied to polymer electrolyte membrane electrolysis (PEME). As a result, the proton conductivity of Cs-substituted composite membranes increased rapidly over $60^{\circ}C$ but mechanical properties, such as tensile strength, decreased in accordance with added Cs content. The bleeding-out of Cs-TPA membranes by titration method (50 vol.% Cs) decreased steadily to 2.15%. In the oxidative stability test by Fenton solution, the durability of membranes with Cs-HPA significantly increased. In case of CL-SPEEK/ Cs-TPA membrane, duration time increased more than 1200 hours. It is expected that even though CL-SPEEK/Cs-MoPA membrane shows the high proton conductivity, electrocatalytic activity and cell voltage of 1.80 V for water electrolysis, the CL-SPEEK/Cs-TPA (imm.) is more suitable as an alternative membrane in real system with the satisfactory proton conductivity, mechanical properties, anti-oxidative stability and cell voltage of 1.89 V.