• Title/Summary/Keyword: Crystallization rate

Search Result 314, Processing Time 0.038 seconds

Operating Parameters for Glutamic Acid Crystallization in Displacement Ion Exchange Chromatography

  • Lee, Kisay
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.2 no.2
    • /
    • pp.117-121
    • /
    • 1997
  • Glutamic acid can be crystallized inside cation exchange column when displacer NaOH concentration is high enough to concentrate displaced glutamic acid beyond its solubility limit. Resulting crystal layer of glutamic acid was moved with liquid phase through the column, and thus could be eluted from the column and recovered in fraction collector. For the purpose of enhancing crystal recovery, effects of operating parameters on the crystal formation were investigated. The increase in the degree of crosslinking of resin favored crystal recovery because of its low degree of swelling. Higher concentration of displacer NaOH was advantageous. If NaOH concentration is too high, however, crystal recovery was lowered due to the solubility-enhancing effects of high pH and ionic strength. The decrease of mobile phase flow rate enhanced crystal recovery because enough time to attain local equilibrium could be provided, but film diffusion would control the overall crystal formation with extremely low flow rate. Lower temperature reduced solubility of glutamic acid and thus favored crystal formation unless the rate of ion exchange was severely reduced. The ion exchange operated by displacement mode coupled with crystallization was advantageous in reducing the burden of further purification steps and in preventing purity-loss resulted from overlapping between adjacent bands.

  • PDF

Nucleation and Crystal Growth of $\beta$-eucryptite in a Glass of the Molecular Composition Li2O.Al2O3.2SiO2 (Li2O.Al2O3.2SiO2의 조성을 갖는 유리에서 $\beta$-eucryptite의 핵생성 및 결정성장)

  • 이상현;장수진
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.3
    • /
    • pp.53-59
    • /
    • 1985
  • Nucleation and crystallization of $\beta$-eucryptite in a glass of molecular percentage composition Li2O.Al2O3.2SiO2 are studied. The glasses are made by quenching of the melts from 143$0^{\circ}C$ to room temperature. Heat-treatment for nucleation and crystal growth are caried out at various temperature in the range between 50$0^{\circ}C$ and 80$0^{\circ}C$ with different duration of time. The amounts of crystallization are estimated by the method of x-ray powder diffraction. As the results a time-temperature-transformation relation for crystallization is derived. The maximum rate of crystallization is observed at about 75$0^{\circ}C$ from the T-T-T-curve while the crystallization temperature is detected at 67$0^{\circ}C$ by DTA measurement. The crystallization temperature moved to 62$0^{\circ}C$ by adding 5 weight percents of TiO2 and it moved to 78$0^{\circ}C$ by adding 2 weight percents of V2O5. The crystallization temperature moved to 62$0^{\circ}C$ by adding 5 weight percent of TiO2 it moved to 78$0^{\circ}C$ by adding 2 weight percents of V2O5 The activation energy for crystallization from the pure glass is calculated as 68 Kcal/mol and it varied to 53 Kcal/mol and 110Kcal/mol when 5 weight percents of TiO2 and weight percents of V2O5 are added respectively.

  • PDF

Crystallization Behavior of Poly(lactic acid) / Poly($\varepsilon$-caprolactone) Blends (폴리락트산/폴리카프로락톤 블렌드의 결정화 거동)

  • 이종록;천상욱;강호종
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.285-292
    • /
    • 2003
  • The compatibility of poly(lactic acid)/poly($\varepsilon$-caprolactone) (PLA/PCL) blends as a function of blend composition was studied and triphenyl phosphite (TPP) was applied to PLA/PCL blends as a reactive compatibilizer. Especially the effect of compatibility on the crystallization behavior in both PLA/PCL blends and PLA/PCL blends with TPP was considered. PLA/PCL blends were immiscible based on thermal characteristics of PLA/PCL blends and the miscibility was depend upon the blend composition. The enhancement of compatibility was found in PLA/PCL blends with TPP depend upon its content. The rate of crystallization in PLA/PCL blend varied with blend composition. This was understood as the development of nucleation at the interface of PLA-PCL due to the immiscibility. TPP was acting as a compatibilizer as well as an agent for the acceleration of spherulite growth In PLA. As a result, the crystallization rate increased and the size of spherulite became larger than that of PLA/PCL blend without TPP.

Effect of Cooling Rate and Crystallizer Type on the Separation of Naphthalene Mixture by Layer Melt Crystallization (경막형 용융결정화에 의한 나프탈렌 혼합물의 분리에 관한 냉각속도와 결정화기 형태의 영향)

  • Kang, So-Rim;Koh, Joo-Young;Kim, Chul-Ung;Park, So-Jin
    • Clean Technology
    • /
    • v.13 no.1 s.36
    • /
    • pp.72-78
    • /
    • 2007
  • As a basic research fur the separation of effective components included in pyrolysis gas oil, the crystallization on each system of naphthalene with 2-methylnaphthalene, indene and 1-methylnaphthalene as impurity has been carried out in column and cold-finger type crystallizer, respectively. In crystallization operation, the purity of naphthalene has been a tendency of increase with decreasing of cooling rate and in the presence of impurity with lower melting point. In comparison of crystallizer types, naphthalene purity in column type crystallizer was a higher value than that in cold-finger type due to effective sweating operation after crystallization.

  • PDF

Antistatic Property and Crystalization Behavior of Polyester Fiber (폴리에스터섬유의 제전성 및 결정화 거동)

  • Kim, Moon-Chan;Lee, Cheal-Gyu
    • Analytical Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.436-440
    • /
    • 1999
  • Antistatic property and crystallization behavior of antistatic poly(ethylene terephthalate) (PET) were studied by feeding antistatic agents into polycondensation reactor. Glass transition and melting temperature of antistatic PET were decreased by poly(ethylene glycol) (PEG) component of antistatic agent. The crystallization rate of antistatic PET was inhibited by decreasing crystallization temperature. Thermal properties and crystallization behavior was affected POAG content of antistatic agent rather than sodium alkylsulfonate of it. The main antistatic component of antistatic agent was POAG. The main role of sodium alkylsulfonate was increasing melt viscosity of antistatic poly(ethylene terephalate) polymer.

  • PDF

Crystallization Kinetics of Reactive Dye(Reactive Red 218) in Salting-out Crystallization System (반응성 염료(Reactive Red 218)의 염석결정화계에서의 결정화 속도)

  • Han, Hyun-Kak;Kang, Hye-jin;Lee, Jong-hoon
    • Korean Chemical Engineering Research
    • /
    • v.48 no.6
    • /
    • pp.712-716
    • /
    • 2010
  • Salting-out technique was adopted to crystallize dye crystals from dye solution. Solubility of dye solution and crystallization kinetics of Reactive Red 218 was investigated. Solubility of dye solution is decreased by higher KCl concentration. The empirical expressions of salting-out crystallization kinetics for Reactive Red 218 in continuous MSMPR crystallizer was $G=6.864{\times}10^{-5}{\Delta}C^{1.207}$ and $B^0=4.8{\times}10^{22}{\Delta}C[1.1{\times}10^{-13}+{({\Delta}C)}^{0.7}{M_T}^2]$.

Influence of Amorphous Polymer Nanoparticles on the Crystallization Behavior of Poly(vinyl alcohol) Nanocomposites

  • Lee, Kyung-Jin;Lee, Ji-Hye;Hong, Jin-Yong;Jang, Jyong-Sik
    • Macromolecular Research
    • /
    • v.17 no.7
    • /
    • pp.476-482
    • /
    • 2009
  • The crystallization behavior of poly(vinyl alcohol) (PVA) in the presence and absence of polypyrrole nanoparticles (PPy NPs) was investigated in terms of the heterogeneous nucleation effect of PPy NPs using FTIR, X-ray diffraction, differential scanning calorimeter and polarized optical microscope analysis. PPy NPs were prepared by dispersion polymerization method stabilized by PVA in aqueous solution. A polymer nanocomposite with uniform dispersity could be readily obtained due to the enhanced compatibility between the filler and matrix. Compared with the PPy NP-absent PVA, the PPy NP/PVA nanocomposite exhibited an enhanced degree of crystallinity. The degree of crystallinity increased up to 17% at the PPy NP concentration of 1 wt%, compared to the pristine PVA. The PPy NP acted as an effective nucleating agent during the crystallization process, thereby enhancing the degree and rate of crystallization. The kinetics study of the crystallization also revealed the decreased value of the Avrami coefficient in the case of the PPy NP/PVA nanocomposite.

Effect of HPAM on Calcium Carbonate Crystallization

  • Jing, Guolin;Tang, Shan;Li, Xiaoxiao
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.3
    • /
    • pp.365-369
    • /
    • 2013
  • With the wide application of ASP (alkaline-surfactant-polymer) flooding, the scaling becomes more and more serious, which is harmful to the oilfield and environment. In order to investigate the effects of HPAM on calcium carbonate crystallization, the crystallization behaviors of $CaCO_3$ in HPAM (Hydrolyzed polyacrylamide) solutions were studied and the composition and morphology of $CaCO_3$ crystal were investigated in different concentrations of polyacrylamide solutions. The crystal forms and morphologies of $CaCO_3$ were characterized by Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. The results show that the crystallization of $CaCO_3$ is strongly influenced by the HPAM. The paper analyzed the internal cause, and the results show: The reasons leading to the change of morphology are carboxyl groups in polyacrylamide molecule and $Ca^{2+}$ in solution form chelates by coordination bond. And the chelates are adsorbed on the calcium hydroxide surfaces of solid-liquid interfaces so as to change the formation rate of calcium carbonate crystal nucleus. The research provides a reliable basis for the mechanism research of the scaling problem in the oil extraction process of ASP flooding and the adoption of scale inhibition and scale inhibitor.

Purification of Naphthalene from Naphthalene and 2-methylnaphthalene System by Layer MelMelt-Crystallization (경막형 용융결정화에 의한 나프탈렌과 2-메틸나프탈렌 혼합물로부터 나프탈렌의 분리)

  • Koh, Joo-Young;Kim, Chul-Uog;Park, So-Jin
    • Clean Technology
    • /
    • v.12 no.3
    • /
    • pp.157-164
    • /
    • 2006
  • In order to purify 2-methylnaphthalene as main impurity included in naphthalene, SLE (solid-liquid equilibria) on two components system including naphthalene and 2-methylnaphthalene were measured and a layered melt crystallization has been studied. SLE in the present system is shown a simple eutectic mixture and the experimental results using DSC method is similar to the static method. Purity and yield of naphthalene in crystal depended mainly on the cooling rate: Increasing cooling rate, the purity of naphthalene in crystal increase, whereas the yield of that decrease. The effective distribution coefficient (Keff) as the degree of impurity removal was observed to decrease with decreasing of cooling rate. Therefore, the purity of naphthalene by melt crystallization can be enhanced to 5~7 %.

  • PDF

Non-isothermal Crystallization Behaviors of Ethylene-Tetrafluoroethylene Copolymer (에틸렌-테트라플르오르에틸렌 공중합체의 비등온 결정화 거동)

  • Lee, Jaehun;Kim, Hyokap;Kan, Ho-Jong
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.803-809
    • /
    • 2012
  • The non-isothermal crystallization behavior of ethylene-tetrafluoroethylene (ETFE) copolymer was investigated by DSC and imaging FTIR analysis. Modified non-isothermal Avrami analysis was applied to interpret the crystallization behavior of ETFE. It was found that the less linearity in ln[-ln(1-X(t))] vs. ln(t) plot was obtained in thermal analysis comparison with imaging FTIR due to relatively small crystallization enthalpy change in ETFE. It means that imaging FTIR measured by overall IR absorption intensity change due to the crystallization was found to be effective to understand the non-isothermal crystallization kinetics of ETFE. In addition, the optical transmittance of ETFE was studied. The crystallite developed by slow cooling caused the light scattering and resulted in the increase of haze and the lowering of transmittance up to 8%. From our results, it was confirmed that cooling rate is an important processing parameter for maintaining optical transmittance of ETFE as a replacement material for glass.