• 제목/요약/키워드: Crystalline silicon solar cell

검색결과 293건 처리시간 0.03초

결정질 실리콘 태양전지용 스크린 프린팅 전극 공정 개발 (Screen Printing Electrode Formation Process for Crystalline Silicon Solar Cell)

  • 엄태우;이상협;송찬문;박상용;임동건
    • Current Photovoltaic Research
    • /
    • 제5권1호
    • /
    • pp.9-14
    • /
    • 2017
  • The screen printing technique is one of process to form electrode for crystalline silicon solar cell and has been studied a lot, because it has many advantages such as low price, high efficiency and mass production due to simple and fast process. The reason why electrode formation is important is for influence of series resistance and amount of incident light in crystalline silicon solar cell. In this study, electrode was formed by screen printing method with various conditions like squeegee angle, printing speed, snap off, printing pressure. After optimizing various conditions, double printing method was applied to obtain low series resistance and high aspect ratio. As a result, we obtained electrode resistance 45.31 ohm, aspect ratio 4.38, shading loss 7.549% mono-crystalline silicon solar cell with optimal double screen printing condition.

PC1D 시뮬레이션을 이용한 결정질 실리콘 태양전지의 도핑 프로파일 모델링 (The Doping Profile Modeling of Crystalline Silicon Solar Cell with PC1D simulation)

  • 최성진;유권종;송희은
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.149-153
    • /
    • 2011
  • The PC1D is widely used for modeling the properties of crystalline silicon solar cell. Optimized doping profile in crystalline silicon solar cell fabrication is necessary to obtain high conversion efficiency. Doping profile in the forms of a uniform, gaussian, exponential and erfc function can be simulated using the PC1D program. In this paper, the doping profiles including junction depth, dopant concentration on surface and the form of doping profile (gaussian, gaussian+erfc function) were changed to study its effect on electrical properties of solar cell. As decreasing junction depth and doping concentration on surface, electrical properties of solar cell were improved. The characteristics for the solar cells with doping profile using the combination of gaussian and erfc function showed better open-circuit voltage, short-circuit current and conversion efficiency.

  • PDF

다공성 실리콘을 이용한 결정질 실리콘 태양전지 반사방지막에 관한 연구 (The research of anti-reflection coating using porous silicon for crystalline silicon solar cells)

  • 이재두;김민정;이수홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.90.2-90.2
    • /
    • 2010
  • The crystalline silicon solar cells have been optical losses. but it can be reduced using light trapping by texture structure and anti-reflection coating. The high reflective index of crystalline silicon at solar wavelengths(400nm~1000nm) creates large reflection losses that must be compensated for by applying anti-reflection coating. In this study, the use of porous silicon(PSi) as an active material in a solar cell to take advantage of light trapping and blue-harvesting photoluminescence effect. Porous silicon is form by anodization and can be obtained in an electrolyte with hydrofluoric. We expect our research can results approaching to lower than 10% of several reflectance by porous silicon solar cells.

  • PDF

박형 결정질 실리콘 태양전지에서의 휨현상 감소를 위한 알루미늄층 두께 조절 (Bow Reduction in Thin Crystalline Silicon Solar Cell with Control of Rear Aluminum Layer Thickness)

  • 백태현;홍지화;임기조;강기환;강민구;송희은
    • 한국태양에너지학회 논문집
    • /
    • 제32권spc3호
    • /
    • pp.194-198
    • /
    • 2012
  • Crystalline silicon solar cell remains the major player in the photovoltaic marketplace with 80% of the market, despite the development of various thin film technologies. Silicon's excellent efficiency, stability, material abundance and low toxicity have helped to maintain its position of dominance. However, the cost of silicon materials remains a major barrier to reducing the cost of silicon photovoltaics. Using the crystalline silicon wafer with thinner thickness is the promising way for cost and material reduction in the solar cell production. However, the thinner the silicon wafer is, the worse bow phenomenon is induced. The bow phenomenon is observed when two or more layers of materials with different temperature expansion coefficiencies are in contact, in this case silicon and aluminum. In this paper, the solar cells were fabricated with different thicknesses of Al layer in order to reduce the bow phenomenon. With less amount of paste applications, we observed that the bow could be reduced by up to 40% of the largest value with 120 micron thickness of the wafer even though the conversion efficiency decrease by 0.5% occurred. Since the bowed wafers lead to unacceptable yield losses during the module construction, the reduction of bow is indispensable on thin crystalline silicon solar cell. In this work, we have studied on the counterbalance between the bow and conversion efficiency and also suggest the formation of enough back surface field (BSF) with thinner Al layer application.

나노 임프린트 공정을 이용한 결정형 실리콘 태양전지 효율 향상 기술 (Technology for Efficiency Enhancement of Crystalline Si Solar Cell using Nano Imprint Process)

  • 조영태;정윤교
    • 한국기계가공학회지
    • /
    • 제12권5호
    • /
    • pp.30-35
    • /
    • 2013
  • In order to increase cell efficiency in crystalline silicon solar cell, reduction of light reflection is one of the essential problem. Until now silicon wafer was textured by wet etching process which has random patterns along crystal orientation. In this study, high aspect ratio patterns are manufactured by nano imprint process and reflectance could be minimized under 1%. After that, screen printed solar cell was fabricated on the textured wafer and I-V characteristics was measured by solar simulator. Consequently cell efficiency of solar cell fabricated using the wafer textured by nano imprint process increased 1.15% than reference solar cell textured by wet etching. Internal quantum efficiency was increased in the range of IR wave length but decreased in the UV wavelength. In spite of improved result, optimization between nano imprinted pattern and solar cell process should be followed.

무전해 도금을 적용한 결정질 실리콘 태양전지의 효율 향상

  • 정명상;장효식;송희은;강민구
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.686-686
    • /
    • 2013
  • Crystalline silicon solar cell is a semiconductor device that converts light into electrical energy. Screen printing is commonly used to form the front/back electrodes in silicon solar cell. Screen printing method is convenient but usually shows high resistance and low aspect ratio, which cause the efficiency decrease in crystalline silicon solar cell. Recently the plating method is applied in c-Si solar cell to reduce the resistance and improve the aspect ratio. In this paper, we investigated the effect of additional electroless Ag plating into screen-printed c-Si solar cell and compared their electrical properties. All wafers used in this experiment were textured, doped, and anti-reflection coated. The electrode formation was performed with screen-printing, followed by the firing step. Aften then we carried out electroless Ag plating by changing the plating time in the range of 20 sec~5 min and light intensity. The light I-V curve and optical microscope were measured with the completed solar cell. As a result, the conversion efficiency of solar cells was increased mainly due to the decreased series resistance.

  • PDF

태양전지용 규소의 texture etching에 미치는 초음파의 영향 (The effect of the ultrasonic wave on the texturisation of the silicon crystal-line solar cell)

  • 김정민;김영관
    • 한국결정성장학회지
    • /
    • 제13권6호
    • /
    • pp.261-266
    • /
    • 2003
  • 결정질 규소를 이용한 태양전지의 제조에 필요한 texture 식각 공정에 초음파를 적용하였다. 이 결과 $60^{\circ}C$에서 초음파를 적용하여 식각된 규소 기판으로 제조된 태양전지의 광전변환효율이 기존의 방식대로 $70^{\circ}C$에서 초음파 없이 식각된 규소 기판으로 제조된 태양전지의 광전변환효율보다 높았다. 이 결과는 규소를 이용한 태양전지의 제조에 필요한 식각공정에서 초음파를 적용하면 공정 온도를 낮출 수 있고 또한 사용되는 고가의 용액을 줄일 수 있어 전체적으로 태양전지의 제조 가격을 낮출 수 있는 가능성을 보여준다.

실리콘 태양전지의 기술현황 및 전망 (Technology Trends and Prospects of Silicon Solar Cells)

  • 박철민;조재현;이영석;박진주;주민규;이윤정;이준신
    • Current Photovoltaic Research
    • /
    • 제1권1호
    • /
    • pp.11-16
    • /
    • 2013
  • The current solar cell industry is experiencing a temporary plateau due to a sluggish economy and oversupply. It is expected that the solar industry can see similar growth to that of the recent past by overcoming the current situation, as there is growing demand globally for solar energy. The current situation led to restructuring of the world's solar industry, and domestic firms will need to have competitiveness through strategic approaches and proprietary technology to survive in the global solar market. Crystalline and amorphous silicon based solar cells have led the solar industry and occupied half or more of the market thus far. They will do so in the future PV market as well by playing a pivotal role in the solar industry. In this paper, the current status and prospects of silicon based solar cells, from materials to comprehensive and high efficiency technology that can emerge in the future, are discussed.

습식 화학 식각에 의한 다결정 실리콘 웨이퍼의 표면 분석 및 효율 변화 (Surface Analysis and Conversion Efficiency of Multi-crystalline Silicon Solar Cell by Wet Chemical Etching)

  • 박석기;도겸선;송희은;강기환;안형근;한득영
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.111-115
    • /
    • 2011
  • Surface Texturing is an essential process for high efficiency in multi-crystalline silicon solar cell. In order to reduce the reflectivity, there are two major methods; proper surface texturing and anti-reflection coating. For texturization, wet chemical etching is a typical method for multi-crystalline silicon. The chemical solution for wet etching consists of HF, $NHO_3$, DI and $CH_3COOH$. We carried out texturization by the change of etching time like 15sec, 30sec, 45sec, 60sec and measured the reflectivity of textured wafers. As making the silicon solar cells, we obtained the conversion efficiency and relationship between texturing condition and solar cell characteristics. The reflectivity from 300nm to 1200nm was the lowest with 15 sec texturing time and 60 sec texturing time showed almost same reflectivity as bare one. The 45 sec texturing time showed the highest conversion efficiency.

  • PDF

Advances in Crystalline Silicon Solar Cell Technology

  • Lee, Hae-Seok;Park, Hyomin;Kim, Donghwan;Kang, Yoonmook
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.82-82
    • /
    • 2015
  • Industrial crystalline silicon (c-Si) solar cells with using a screen printing technology share the global market over 90% and they will continue to be the same for at least the next decade. It seems that the $2^{nd}$ generation and the $3^{rd}$ generation technologies have not yet demonstrated competitiveness in terms of performance and cost. In 2014, new world record efficiency 25.6% (Area-$143.7cm^2$, Voc-0.740V, $Jsc-41.8mA/cm^2$, FF-0.827) was announced from Panasonic and its cell structure is Back Contact $HIT^*$ c-Si solar cell. Here, amorphous silicon passivated contacts were newly applied to back contact solar cell. On the other hand, 24.9% $TOPCon^{**}$ cell was announced from Fraunhofer ISE and its key technology is an excellent passivation quality applying tunnel oxide (<2 nm) between metal and silicon or emitter and base. As a result, to realize high efficiency, high functional technologies are quite required to overcome a theoretical limitation of c-Si solar cell efficiency. In this presentation, Si solar cell technology summarized in the International Technology Roadmap for Photovoltaics ($^{***}ITRPV$ 2014) is introduced, and the present status of R&D associated with various c-Si solar cell technologies will be reviewed. In addition, national R&D projects of c-Si solar cells to be performed by Korea University are shown briefly.

  • PDF