• Title/Summary/Keyword: Crystal-field parameters

Search Result 66, Processing Time 0.028 seconds

Theoretical Calculation of Zero Field Splitting of $Mn^{2+}$ Ion in $LiTaO_3$Crystal

  • Yeom, T.H;Lee, S.H
    • Journal of Magnetics
    • /
    • v.6 no.3
    • /
    • pp.77-79
    • /
    • 2001
  • The semi-empirical superposition model has been applied to calculate the zero field splitting parameters of $Mn^{2+}$ion in $LiTaO_3$ single crystal, assuming that $Mn^{2+}$ion occupies one of two possible sites: $Li^{l+} \;or\; Ta^{5+}$ site, respectively. The 2nd-order axial zero field splitting parameters are $958\times10^{-4}cm^{-1}\; at\; Li^{1+}$ site and $193\times 10^{-4}cm^{-1} \;at\; Ta^{5+}$ site for $Mn^{2+}$ions. The 4th-order zero field splitting parameters at $Li^{l+} \;and\; Ta^{5+}$ sites are also determined. These calculated zero field splitting parameters are very important to determine the substitutional sites of doped impurity ions in $LiTaO_3$ crystal.

  • PDF

Crystal growth from melt in combined heater-magnet modules

  • Rudolph, P.;Czupalla, M.;Dropka, N.;Frank-Rotsch, Ch.;KieBling, F.M.;Klein, O.;Lux, B.;Miller, W.;Rehse, U.;Root, O.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.5
    • /
    • pp.215-222
    • /
    • 2009
  • Many concepts of external magnetic field applications in crystal growth processes have been developed to control melt convection, impurity content and growing interface shape. Especially, travelling magnetic fields (TMF) are of certain advantages. However, strong shielding effects appear when the TMF coils are placed outside the growth vessel. To achieve a solution of industrial relevance within the framework of the $KRISTMAG^{(R)}$ project inner heater-magnet modules(HMM) for simultaneous generation of temperature and magnetic field have been developed. At the same time, as the temperature is controlled as usual, e.g. by DC, the characteristics of the magnetic field can be adjusted via frequency, phase shift of the alternating current (AC) and by changing the amplitude via the AC/DC ratio. Global modelling and dummy measurements were used to optimize and validate the HMM configuration and process parameters. GaAs and Ge single crystals with improved parameters were grown in HMM-equipped industrial liquid encapsulated Czochralski (LEC) puller and commercial vertical gradient freeze (VGF) furnace, respectively. The vapour pressure controlled Czochralski (VCz) variant without boric oxide encapsulation was used to study the movement of floating particles by the TMF-driven vortices.

Luminescence and Crystal Field Parameters of the Na₃[Eu(ODA)₃]·7H₂O Complex in Single Crystalline State

  • 강준길;윤수경;손영구;김종구
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.8
    • /
    • pp.861-864
    • /
    • 1997
  • Luminescence spectrum of Na3[Eu(ODA)3]·7H2O (ODA≡oxydiacetato) was measured at various temperatures. The characteristic band splitting within 5D0→7FJ (J = 1, 2, 3 and 4) were phenomenologically simulated by using crystal field theory. The set of crystal field parameters reproduces the emission lines in a satisfactory manner with a rms deviation of 21.4 cm-1. It leads the reliable assignment of the luminescence bands and the energy level scheme of 7FJ (J = 1, 2, 3 and 4) multiplets.

Luminescence and Crystal-Field Analysis of Europium and Terbium Complexes with Oxydiacetate and 1,10-Phenanthroline

  • Kang, Jun-Gill;Kim, Tack-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.7
    • /
    • pp.1057-1064
    • /
    • 2005
  • Photoluminescence (PL) spectra of Eu(III) and Tb(III) complexes with mixed oxydiacetate (ODA) and 1,10-phenanthroline (phen) ligands and with homoleptic ODA reveal characteristic line-splitting at 10 K, depending on the site-symmetry of the lanthanide ion in the complex. The energy-level schemes of the $^7F_J$ states and the emitting levels for Eu(III) and Tb(III) ions have been proposed by simulating the line splitting in the framework of crystal-field Hamiltonian. The sets of refined crystal-field parameters for the experimentally determined sitesymmetry satisfactorily reproduce the experimental energy-level schemes. In addition, the PL quantum yield and the decay time were determined at room temperature. The PL quantum yields of [$Eu(ODA){\cdot}(phen){\cdot}4H_2O]^+$ and [Tb$(ODA){\cdot}(phen){\cdot}4H_2O]^+$ in the crystalline state (Q = 17.7 and Q = 56.6%, respectively) are much greater than those of [Eu($ODA)_3]^{3-}and\;[Tb(ODA)_3]^{3-}$(Q = 1.1 and Q = 1.3, respectively), due to the energy transfer from phen to the lanthanide ion. In the aqueous state, the relaxation of the phen moiety due to the solvent results in the reduction of the quantum yield and the shortening of the lifetime.

Calculation of the Cubic Crystal Field Splitting 10 Dq in KNiF$_3$. An Integral Hellmann-Feynman Approach (Integral Hellmann-Feynman Approach에 의한 KNiF$_3$의 Cubic Crystal Field Splitting 10 Dq의 계산)

  • Hojing Kim;Hie-Joon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.6
    • /
    • pp.395-405
    • /
    • 1973
  • By use of an Integral Hellmann-Feynman formula, the cubic crystal field splitting 1O Dq in $KNiF_3$ is calculated from first principles. Numerical values of covalency parameters and necessary integrals are quoted from Sugano and Shulman. The result, 7100$cm^{-1}$, is in excellent agreement with the observed value, 7250$cm^{-1}$. It is found that higher order perturbation energy correction is of the same order of magnitude as 10 Dq itself and is, therefore, essential tin calculating 10 Dq from first principles. It is also found that the point charge potential is the dominant part of the crystal field potential.

  • PDF

Crystal Geometry Optimization of β-Lactam Antibiotics Using MMFF Parameters

  • 원영도
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.10
    • /
    • pp.944-952
    • /
    • 1995
  • A generic force field approach has been applied to geometry optimization of penam and cephem crystals. The crystalline state energy and force evaluation with the universal force field (MMFF: Merck Molecular Force Field) results in good agreements with the crystallographic data. Bond lengths are usually correct to within 0.02 Å and bond angles usually to within 2.5°. The conformation of the β-lactam bicyclic rings in the crystal environment is also well reproduced. The results thus demonstrate the applicability of MMFF to modeling of newer molecular constructs in condensed phase.

Simulation for Electro-Optic Characteristics of the Fringe-Field Driven Reflective Hybrid Aligned Nematic Liquid Crystal Display with One Polarizer (1매의 편광판으로 구성된 Fringe-Field 구동형 반사형 Hybrid Aligned Nematic 액정디스플레이의 전기-광학 특성에 관한 시뮬레이션)

  • 박지혁;정태봉;이종문;김용배;이승희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.10
    • /
    • pp.908-913
    • /
    • 2003
  • We have performed computer simulation to obtain electro-optic characteristics of reflective hybrid aligned nematic liquid crystal displays (LCDs) driven by fringe field. The results show that the optimal retardation value (dΔn) of the cell is 0.289 ${\mu}$m, which allows for the cell to have a practical cell gap of larger than 3 ${\mu}$m when manufacturing. A reflectance of the dark state is only 0.114 % for an incident light 550 nm. At this condition, the light efficiency of white state reaches 92.7 %. The display with optimized cell parameters shows that the contrast ratio greater than 5 exists over 600 of polar angle in all directions and lower driving voltage than that of fringe-field driven homogeneously aligned reflective LCD.

Ligand Field Approach to $4d^{1}$ Magnetism Based on Intermediate Field Coupling Scheme

  • 최진호;김종영
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.9
    • /
    • pp.976-981
    • /
    • 1997
  • The magnetic susceptibilities of molybdenum ions with 4d1 electronic configuration in the octahedral crystal field were calculated on the basis of ligand field theory. The experimental magnetic susceptibilities for molybdenum ions, which are stabilized at the octahedral site in the perovskite lattice of Ba2ScMoⅤO6 and Sr2YMoⅤO6, were compared with the theoretical ones. We have tried to fit their temperature dependence of magnetic susceptibility with ligand field parameters, spin-orbit coupling constant ζSO, and orbital reduction parameter κ according to intermediate field coupling and strong field theory. Strong field coupling theory could not explain experimental curves without unrealistically large axial ligand field, since it ignores the mixing up between different state via spin-orbit interaction and ligand field. On the other hand, the intermediate field coupling theory could successfully reproduce experimental data in octahedral and trigonal ligand field. The fitting result demonstrates not only the fact that spin-orbit interaction is primarily responsible for the variation of magnetic behavior but also the fact that effective orbital overlap, enhanced by cubic crystal structure, reduces significantly orbital angular momentum as indicated by κ parameter.

Electro-Optic Characteristics of Fringe-Field Switching (FFS) according to Magnitude of Dielectric Anisotropy of Liquid Crystal (Fringe-Field Switching (FFS)모드의 액정 물성과 셀 파라미터에 따른 전기-광학 특성 연구)

  • Jung, Jun-Ho;Ha, Kyung-Su;Kim, Min-Su;Lee, Hee-Kyu;Lee, Seung-Eun;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04a
    • /
    • pp.61-62
    • /
    • 2009
  • Electro-optical properties of liquid crystal display (LCD) using fringe-field switching (FFS) devices depend on many parameters such as cell retardation, electrode structure, magnitude and sign of dielectric anisotropy, rubbing angle and cell gap. In this paper, the light efficiency of FFS device depending on magnitude of positive dielectric anisotropy with other cell parameters such as rubbing angle and angle and cell gap have been explored compared with FFS device using LC with negative dielectric anisotropy.

  • PDF

Periodically Poled $KNbO_3$ Crystals for Quasi-Phase-Matching

  • Kim, Joong-Hyun;Lee, Sooseok;Yoon, Choon-Sup
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.18-18
    • /
    • 2002
  • Although it was suggested in 1962 that an efficient wavelength conversion could be achieved using ferroelectric crystals of periodic 180° domains, it was not until 1990's that quasi-phase-matching (QPM) became realized, as technology for periodic poling of LiNbO₃ crystals was readily available. Since ferroelectric domain inversion brings about change of the sign of second-order nonlinear susceptibility, periodically poled ferroelectric structures provide an ideal way of achieving QPM for second-harmonic generation and optical parametric oscillation. Periodically poled ferroelectric domains can also be utilized for optical devices, such as Brags electrooptic modulators. fabrication of stable periodic domain structures depends on a number of poling parameters of a ferroelectric crystal, such as coercive field, internal field and electrical conductivity. We present poling kinetics of KNbO₃ crystals, which involve domain nucleation and growth, backswitching, relaxation of internal field. Optimum poling conditions were established by designing a proper wave shape of external field. We demonstrate an efficient second-harmonic generation using QPM in a periodically poled KNbO₃ crystal.

  • PDF