Browse > Article
http://dx.doi.org/10.5012/bkcs.2005.26.7.1057

Luminescence and Crystal-Field Analysis of Europium and Terbium Complexes with Oxydiacetate and 1,10-Phenanthroline  

Kang, Jun-Gill (Department of Chemistry, Chungnam National University)
Kim, Tack-Jin (Department of Chemistry, Chungnam National University)
Publication Information
Abstract
Photoluminescence (PL) spectra of Eu(III) and Tb(III) complexes with mixed oxydiacetate (ODA) and 1,10-phenanthroline (phen) ligands and with homoleptic ODA reveal characteristic line-splitting at 10 K, depending on the site-symmetry of the lanthanide ion in the complex. The energy-level schemes of the $^7F_J$ states and the emitting levels for Eu(III) and Tb(III) ions have been proposed by simulating the line splitting in the framework of crystal-field Hamiltonian. The sets of refined crystal-field parameters for the experimentally determined sitesymmetry satisfactorily reproduce the experimental energy-level schemes. In addition, the PL quantum yield and the decay time were determined at room temperature. The PL quantum yields of [$Eu(ODA){\cdot}(phen){\cdot}4H_2O]^+$ and [Tb$(ODA){\cdot}(phen){\cdot}4H_2O]^+$ in the crystalline state (Q = 17.7 and Q = 56.6%, respectively) are much greater than those of [Eu($ODA)_3]^{3-}and\;[Tb(ODA)_3]^{3-}$(Q = 1.1 and Q = 1.3, respectively), due to the energy transfer from phen to the lanthanide ion. In the aqueous state, the relaxation of the phen moiety due to the solvent results in the reduction of the quantum yield and the shortening of the lifetime.
Keywords
Europium; Terbium; Oxydiacetate; 1,10-Phenanthroline; Crystal-field parameters;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Richardson, F. S. Chem. Rev. 1982, 82, 541   DOI
2 Bünzli, J.-C. G. Lanthanide Probes in Life, Chemical and Earth Sciences; Bunzli, J.-C. G.; Choppin, G. R., Eds.; Elsevier: Amsterdam, Oxford, New York, Tokyo, 1989; Chapter 7
3 Albin, M.; Whittle, R. R.; De, W.; Horrocks, W. Jr., Inorg. Chem. 1985, 24, 4591   DOI
4 Schoene, K. A.; Quagliano, J. R.; Richardson, F. S. Inorg. Chem. 1991, 30, 3803   DOI
5 Metcalf, D. H.; Hopkins, T. A.; Richardson, F. S. Inorg. Chem. 1995, 34, 4868   DOI   ScienceOn
6 Kang, J.-G.; Kim, T.-J.; Park K. S.; Kang, S. K. Bull. Korean Chem. Soc. 2004, 25, 337
7 Kim, K.-B.; Kim, Y.-I.; Chun, H.-G.; Cho, T.-Y.; Jung, J.-S.; Kang, J.-G. Chem. Mater. 2002, 14, 5045   DOI   ScienceOn
8 Kang, J.-G.; Kim, T.-J.; Kang, H.-J.; Kang, S. K. J. Photochem. Photobio. A 2005 (in press)
9 Handbook of the Physics and Chemistry of Rare Earths; Thompson, L. C., Eds.; North-Holland: Amsterdam and New York, 1979; V. 3, Chapter 25
10 Mirochnik, A. G.; Bukvetskii, B. V.; Zhikhareva, P. A.; Karasev, V. E. Russ. J. Coord. Chem. 2001, 27, 443   DOI   ScienceOn
11 Fronczek, F. R.; Banerjee, A. K.; Watkins, S. F.; Schwartz, R. W. Inorg. Chem. 1981, 20, 2745   DOI
12 McGehee, M. D.; Bergstedt, T. B.; Zhang, C.; Saab, A. P.; O'Regan, M. B.; Bazan, G. C.; Srdanov, V. I.; Heeger, A. J. Adv. Mater. 1999, 11, 1349   DOI
13 de Sa, G. F.; Malta, O. L.; de Mello, Donega, C.; Simas, A. M.; Longo, R. L.; Sata-Cruz, P. A.; da Silva, E. F. Jr. Coord. Chem. Rev. 2000, 196, 165   DOI   ScienceOn
14 Zheng, Y.; Fu, L.; Zhou, Y.; Yu, J.; Yu, Y.; Wang, S.; Zhang, H. J. Mater. Chem. 2002, 12, 919   DOI   ScienceOn
15 de Mello, J. C.; Wittmann, H. F.; Friend, R. H. Adv. Mater. 1997, 9, 230   DOI   ScienceOn
16 Wybourne, B. G. Spectroscopic Properties of Rare Earths; Interscience Pub.: New York, London, Sydney, 1965; Chapter 6
17 Chang, N. C.; Gruber, J. B.; Leavitt, R. P.; Morrison, C. A. J. Chem. Phys. 1982, 76, 3877   DOI
18 Leavitt, R. P. J. Chem. Phys. 1982, 77, 1661   DOI