• Title/Summary/Keyword: Crystal violet

Search Result 157, Processing Time 0.025 seconds

Assessment of Post-Pasteurization Contamination of Fluid Milk Products (액상유의 살균후 오염에 관한 연구)

  • Huh, Chung-Jae
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.6
    • /
    • pp.517-521
    • /
    • 1988
  • This study focused on the psychrotrophic post-pasteurization contamination of fluid milk pro-ducts which were processed by HTST system. Pasteurized line samples and container samples of each fluid milk product (whole milk and skim milk) were taken in a large fluid milk plant. tine samples were collected through nine and five different sampling locations for whole milk and skim milk products, respectively. Each sample was subjected to preliminary incubation (PI) at 21$^{\circ}C$ for 16h followed by standard plate count (SPC) and crystal violet tetrazolium agar count (CVT). Flavor, SPC, and psychrotrophic bacteria count (PBC) were determined after 7 d at 7.2$^{\circ}C$. In addition, ten sequential container samples (packaged in 1000ml paperboard containers) were taken from a filler at the beginning of each product run. These samples were used for PI followed by SPC and CVT. In addition, flavor evaluations, SPC and PBC tests were conducted after 7,10, and 14 d at 7.2$^{\circ}C$. The mean PI-CVT values for the line samples showed differences depending on the location. There was major contamination between pasteurized storage tank and the filler. The PI-CVT counts for each container sample were negatively correlated with flayer scores at 10 and 140. There were good correlations among PI-CVT values of line samples and the percentage of total container samples with acceptable flavor after 10d.

  • PDF

Biodegradation of aromatic dyes and bisphenol A by Trametes hirsuta (Wulfen) Pilat (흰구름버섯에 의한 방향족 염료와 비스페놀 A의 분해)

  • Im, Kyung-Hoan;Baek, Seung-A;Choi, Jae-hyuk;Lee, Tae-Soo
    • Journal of Mushroom
    • /
    • v.17 no.4
    • /
    • pp.247-254
    • /
    • 2019
  • Trametes hirsuta, a white rot fungus, exhibits the ability to degrade synthetic aromatic dyes such as congo red (CR), methylene blue (MB), crystal violet (CV), and remazol brilliant blue R (RBBR). The mycelia of T. hirsuta degraded RBBR and CR more efficiently than CV and MB in the PDB liquid medium (supplemented with 0.01% 4 aromatic dyes). In these mycelia the activities of three ligninolytic enzymes-laccase, manganese peroxidase (MnP), and lignin peroxidase (LiP)-were observed. Among these, laccase was identified to be the major enzyme responsible for the degradation of the four aromatic dyes. The degradation of bisphenol A was also investigated by culturing the mycelia of T. hirsuta in YMG medium supplemented with 100 ppm bisphenol A. The mycelia of T. hirsuta were found to degrade bisphenol A by 71.3, 95.3, and 100 % within incubation periods of 12, 24, and 36 hr, respectively. These mycelia also showed ligninolytic enzyme-like activities including those similar to laccase, MnP, and LiP. Therefore, these results indicate that T. hirsuta could emerge as a potential tool for the remediation of environmental contamination by aromatic dyes and bisphenol A.

Preparation of PVA/Graphene Oxide/Fe3O4 Magnetic Microgels as an Effective Adsorbent for Dye Removal (폴리바이닐알코올/그래핀 옥사이드/산화철 자성 마이크로겔을 이용한 염료 제거)

  • Go, Seongmoon;Kim, Keunseong;Wi, Eunsol;Park, Rae-Su;Jung, Hong-Ryun;Yun, Changhun;Chang, Mincheol
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.98-105
    • /
    • 2022
  • In this study, polyvinyl alcohol (PVA)/graphene oxide (GO)/iron oxide (Fe3O4) magnetic microgels were prepared using a microfluidic approach and the dye adsorption capacity of the microgels was confirmed. The adsorption capacity (qe) of the gels was evaluated by varying the dye concentration, pH, and contact time with the microgels. The dyes used in this work were methylene blue (MB), crystal violet (CV), and malachite green (MG), and microgels showed the highest adsorption capacity (191.1 mg/g) in methylene blue. The microgels exhibited the highest adsorption capacity in the dye aqueous solution at pH 10 due to the presence of atomic nitrogen ions (N+) on the dye molecules. The adsorption isotherm studies revealed that the Langmuir isotherm is the best fit isotherm model for the dye adsorption on the microgels, indicative of monolayer adsorption. The kinetic analysis exhibited that the pseudo-second order model fits better than the pseudo-first order model, confirming that the adsorption process is chemisorption. In addition, the magnetic microgels showed good reusability and recovery efficiency. It was confirmed that the adsorption capacity of the gels maintains more than 70% of the initial capacity after 5 times of cycle experiments.

Synthetic aromatic dye degradation by white rot fungus, Pleurotus eryngii (큰느타리(Pleurotus eryngii)의 방향족 합성염료 분해 특성)

  • Im, Kyung-Hoan;Baek, Seung-A;Lee, Tae Soo
    • Journal of Mushroom
    • /
    • v.20 no.2
    • /
    • pp.86-91
    • /
    • 2022
  • Pleurotus eryngii, a white rot fungus, produces two extracellular lignin-degrading enzymes, laccase and manganese peroxidase (MnP). Owing to these enzymes, P. eryngii efficiently degrades synthetic chemicals such as azo, phthalocyanine, and triphenyl methane dyes. In this study, we investigated the degradation processes of four aromatic dyes, congo red (CR), methylene blue (MB), crystal violet (CV), and malachite green (MG), by P. eryngii under solid and liquid culture conditions. CR and MG were the most quickly degraded under solid and liquid culture conditions, respectively. However, compared to CR, CV, and MG, MB was not degraded well under both culture conditions. The activities of ligninolytic enzymes (laccase and MnP) were also investigated. Laccase was identified to be the major enzyme for dye degradation. A positive relationship between decolorization and enzyme activity was observed for CR, MB, and CV degradation. In contrast, decolorization of MG ensued after high enzyme activity. These results indicate that the degradation process differs between MG and the other aromatic dyes. Therefore, P. eryngii could be a potential tool for the bioremediation of synthetic aromatic dye effluent.

Effectiveness of cephalosporins in hydrolysis and inhibition of Staphylococcus aureus and Escherichia coli biofilms

  • Jawaria Aslam;Hafiz Muhammad Ali;Shujaat Hussain;Muhammad Zishan Ahmad;Abu Baker Siddique;Muhammad Shahid;Mirza Imran Shahzad;Hina Fatima;Sarah Tariq;Fatima Sadiq;Maria Aslam;Umar Farooq;Saadiya Zia;Rawa Saad Aljaluod;Khaloud Mohammed Alarjani
    • Journal of Veterinary Science
    • /
    • v.25 no.3
    • /
    • pp.47.1-47.12
    • /
    • 2024
  • Importance: Staphylococcus aureus and Escherichia coli contribute to global health challenges by forming biofilms, a key virulence element implicated in the pathogenesis of several infections. Objective: The study examined the efficacy of various generations of cephalosporins against biofilms developed by pathogenic S. aureus and E. coli. Methods: The development of biofilms by both bacteria was assessed using petri-plate and microplate methods. Biofilm hydrolysis and inhibition were tested using first to fourth generations of cephalosporins, and the effects were analyzed by crystal violet staining and phase contrast microscopy. Results: Both bacterial strains exhibited well-developed biofilms in petri-plate and microplate assays. Cefradine (first generation) showed 76.78% hydrolysis of S. aureus biofilm, while significant hydrolysis (59.86%) of E. coli biofilm was observed by cefipime (fourth generation). Similarly, cefuroxime, cefadroxil, cefepime, and cefradine caused 78.8%, 71.63%, 70.63%, and 70.51% inhibition of the S. aureus biofilms, respectively. In the case of E. coli, maximum biofilm inhibition (66.47%) was again shown by cefepime. All generations of cephalosporins were more effective against S. aureus than E. coli, which was confirmed by phase contrast microscopy. Conclusions and Relevance: Cephalosporins exhibit dual capabilities of hydrolyzing and inhibiting S. aureus and E. coli biofilms. First-generation cephalosporins exhibited the highest inhibitory activity against S. aureus, while the third and fourth generations significantly inhibited E. coli biofilms. This study highlights the importance of tailored antibiotic strategies based on the biofilm characteristics of specific bacterial strains.

Iron chelating agent, deferoxamine, induced apoptosis in Saos-2 osteosarcoma cancer cells (Saos-2 골육종 세포에서 iron chelating agent, deferoxamine에 의한 apoptosis 유도)

  • Park, Eun Hye;Lee, Hyo Jung;Lee, Soo Yeon;Kim, Sun Young;Yi, Ho Keun;Lee, Dae Yeol;Hwang, Pyoung Han
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.2
    • /
    • pp.213-219
    • /
    • 2009
  • Purpose:Iron is a critical nutritional element that is essential for a variety of important biological processes, including cell growth and differentiation, electron transfer reactions, and oxygen transport, activation, and detoxification. Iron is also required for neoplastic cell growth due to its catalytic effects on the formation of hydroxyl radicals, suppression of host defense cell activities, and promotion of cancer cell multiplication. Chronic transfusion-dependent patients receiving chemotherapy may have iron overload, which requires iron-chelating therapy. We performed this study to demonstrate whether the iron chelating agent deferoxamine induces apoptosis in Saos-2 osteosarcoma cells, and to investigate the underlying apoptotic mechanism. Methods:To analyze the apoptotic effects of an iron chelator, cultured Saos-2 cells were treated with deferoxamine. We analyzed cell survival by trypan blue and crystal violet analysis, apoptosis by nuclear condensation, DNA fragmentation, and cell cycle analysis, and the expression of apoptotic related proteins by Western immunoblot analysis. Results:Deferoxamine inhibited the growth of Saos-2 cell in a time- and dose-dependent manner. The major mechanism for growth inhibition with the deferoxamine treatment was by the induction of apoptosis, which was supported by nuclear staining, DNA fragmentation analysis, and flow cytometric analysis. Furthermore, bcl-2 expression decreased, while bax, caspase-3, caspase-9, and PARP expression increased in Saos-2 cells treated with deferoxamine. Conclusion:These results demonstrated that the iron chelating agent deferoxamine induced growth inhibition and mitochondrial-dependent apoptosis in osteosarcoma Saos-2 cells, suggesting that iron chelating agents used in controlling neoplastic cell fate can be potentially developed as an adjuvant agent enhancing the anti-tumor effect for the treatment of osteosarcoma.

Comparative Study of Toxic Effects of Anatase and Rutile Type Nanosized Titanium Dioxide Particles in vivo and in vitro

  • Numano, Takamasa;Xu, Jiegou;Futakuchi, Mitsuru;Fukamachi, Katsumi;Alexander, David B.;Furukawa, Fumio;Kanno, Jun;Hirose, Akihiko;Tsuda, Hiroyuki;Suzui, Masumi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.929-935
    • /
    • 2014
  • Two types of nanosized titanium dioxide, anatase ($anTiO_2$) and rutile ($rnTiO_2$), are widely used in industry, commercial products and biosystems. $TiO_2$ has been evaluated as a Group 2B carcinogen. Previous reports indicated that $anTiO_2$ is less toxic than $rnTiO_2$, however, under ultraviolet irradiation $anTiO_2$ is more toxic than $rnTiO_2$ in vitro because of differences in their crystal structures. In the present study, we compared the in vivo and in vitro toxic effects induced by $anTiO_2$ and $rnTiO_2$. Female SD rats were treated with $500{\mu}g/ml$ of $anTiO_2$ or $rnTiO_2$ suspensions by intra-pulmonary spraying 8 times over a two week period. In the lung, treatment with $anTiO_2$ or $rnTiO_2$ increased alveolar macrophage numbers and levels of 8-hydroxydeoxyguanosine (8-OHdG); these increases tended to be lower in the $anTiO_2$ treated group compared to the $rnTiO_2$ treated group. Expression of $MIP1{\alpha}$ mRNA and protein in lung tissues treated with $anTiO_2$ and $rnTiO_2$ was also significantly up-regulated, with $MIP1{\alpha}$ mRNA and protein expression significantly lower in the $anTiO_2$ group than in the $rnTiO_2$ group. In cell culture of primary alveolar macrophages (PAM) treated with $anTiO_2$ and $rnTiO_2$, expression of $MIP1{\alpha}$ mRNA in the PAM and protein in the culture media was significantly higher than in control cultures. Similarly to the in vivo results, $MIP1{\alpha}$ mRNA and protein expression was significantly lower in the $anTiO_2$ treated cultures compared to the $rnTiO_2$ treated cultures. Furthermore, conditioned cell culture media from PAM cultures treated with $anTiO_2$ had less effect on A549 cell proliferation compared to conditioned media from cultures treated with $rnTiO_2$. However, no significant difference was found in the toxicological effects on cell viability of ultra violet irradiated $anTiO_2$ and $rnTiO_2$. In conclusion, our results indicate that $anTiO_2$ is less potent in induction of alveolar macrophage infiltration, 8-OHdG and $MIP1{\alpha}$ expression in the lung, and growth stimulation of A549 cells in vitro than $rnTiO_2$.