• Title/Summary/Keyword: Crystal shape

Search Result 583, Processing Time 0.022 seconds

Effect of Surface Energy Anisotropy on the Equilibrium Shape of Sapphire Crystal

  • Choi, Jung-Hae
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.907-911
    • /
    • 2002
  • Using the two-dimensional Wulff plot, the equilibrium shape of a sapphire crystal was investigated as a function of surface energy anisotropy. Depending on the relative values of surface energy for various facet planes, the projected shape of equilibrium sapphire was determined to be rectangle, parallelogram, hexagon or octagon. The results are compared with the experimentally observed shapes of internal cavities of submicron range in sapphire single crystals.

Finite element analysis for czochralski growth process of sapphire single crystal (사파이어 단결정의 초크랄스키 성장공정에 대한 유한요소분석)

  • Lim, S.J.;Shin, H.Y.;Kim, J.H.;Im, J.I.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.5
    • /
    • pp.193-198
    • /
    • 2011
  • Recently sapphire crystals are used in LED applications. The Czochralski (CZ) growth process is one of the most important techniques for growing high quality sapphire single crystal. A successful growth of perfect single crystals requires the control of heat and mass transport phenomena in the CZ growth furnace. In this study, the growth processes of the sapphire crystal in an inductively heated CZ furnace have been analyzed numerically using finite element method. The results shown that the high temperature positions moved from the crucible surface to inside the melt and the crystal-melt interface changed to the flat shape when the rpm was increased. Also the crystal-melt interface shape has been influenced by the shoulder shape of the grown crystal during the initial stage.

Y2BaCuO4 Segregarion , a Possibility of Multi-Seeding and the Origin of Diagonal Line in YBa2Cu3O7-$\delta$ Superconductor Single Crystal (YBa_{2}Cu_{3}O_{7-\delta} 고온초전도체 단결정에서의 Y_{2}BaCuO_{5} 편석과 Multi-Seeding의 가능성, 대각선 흔적의 형성 원인)

  • 성현태
    • Progress in Superconductivity and Cryogenics
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 1999
  • The microstructures of top seed mult processde $\textrm{YBa}_2\textrm{Cu}_3\textrm{O}_7$.$\delta$ single crystal were studied. Although shape of the seed was not faceted. the growth shape of Y123 single crystal was faceted. It was observed that Y211 phases were trapped in specific spaces of the faceted region. From the microstructural investigation. it was suggested that the segregation of Y211 is due to the difference of growth rates in crystal direction. When a single crystal was grown by the single seed with stepped multi surfaces. a microstrue was grown from multi-seed. The microstructure show the possibility of multi-seed growth. Corn kernel like structure without Y211 phase was observed and seemed to be formed by the diffusion reaction between Y211 phase in crystal and liquid wetted on the crystal. the diagonal line on Y123 crystal was observed that it was formed by the corn kernel like structure.

  • PDF

Identification of crystal variants in shape-memory alloys using molecular dynamics simulations

  • Wu, Jo-Fan;Yang, Chia-Wei;Tsou, Nien-Ti;Chen, Chuin-Shan
    • Coupled systems mechanics
    • /
    • v.6 no.1
    • /
    • pp.41-54
    • /
    • 2017
  • Shape-memory alloys (SMA) have interesting behaviors and important mechanical properties due to the solid-solid phase transformation. These phenomena are dominated by the evolution of microstructures. In recent years, the microstructures in SMAs have been studied extensively and modeled using molecular dynamics (MD) simulations. However, it remains difficult to identify the crystal variants in the simulation results, which consist of large numbers of atoms. In the present work, a method is developed to identify the austenite phase and the monoclinic martensite crystal variants in MD results. The transformation matrix of each lattice is calculated to determine the corresponding crystal variant. Evolution of the volume fraction of the crystal variants and the microstructure in Ni-Ti SMAs under thermal and mechanical boundary conditions are examined. The method is validated by comparing MD-simulated interface normals with theoretical solutions. In addition, the results show that, in certain cases, the interatomic potential used in the current study leads to inconsistent monoclinic lattices compared with crystallographic theory. Thus, a specific modification is applied and the applicability of the potential is discussed.

Characteristic of Hyperfine Magnesioferrite Particles Possessing Shape Anisotropy

  • Going Yim;Chai Suck Yim
    • The Journal of Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.99-103
    • /
    • 2005
  • The ferrimagnetic resonance technique, with the inclusion of shaper anisotropy effects, was used to obtain information about the early stages in the precipitation of magnesium ferrite from iron-doped magnesia. The very small magnesioferrite particles were produced by precipitation method from solid solution of iron ion in single crystal magnesia. The temperature dependence of the resonance anisotropy field for a coherent assembly of hyperfine magnesium ferrite precipitates was investigated in the range 100~400K. The results are interpreted in terms of the shape anisotropy of the precipitates.

  • PDF

The effect of the system factors on the shape of the S/L interface in GaAs single crystal grown by VGF method (VGF법을 사용한 GaAs 단결정 성장시 계의 구성요소가 고액계면의 형상에 미치는 영향)

  • Seung-Ho Hahn;Hyung-Tae Chung;Young-Kyu Kim;Jong-Kyu Yoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.1
    • /
    • pp.33-41
    • /
    • 1994
  • It is well known that the position and the shape of the S/L interface affect the qualities of the single crystal in the growth process. Thus the information of the temperature profile in the growth system is very important. In this study, we developed the program to predict the temperature profile from the setting values of the heating blocks in VGF(vertical gradient freezing) single crystal growth system. With this program, we studied the effects of the materials and the sizes of support rod, the materials of the crucible on the S/L interface shape. The larger radius and/or smaller thermal diffusivity support rod was, the flatter the S/L interface was. When the thermal conductivity of crucible was isotropic, the S/L interface was more concave downward to the solid phase in proportional to the increase of thermal diffusivity of the crucible. By the comparison of the S/L interface shape between PBN crucible and quartz crucible for the same condition, the effect of anisotropy of thermal conductivity of crucible showed different trends with respect to the position of the S/L interface.

  • PDF

Influence of Temperature and PAA(PolyAcrylic Acid) Solution in the Formation of Calcium Carbonate Crystal (탄산칼슘결정 생성에서 온도와 PAA 영향)

  • Han, Hyun Kak;Kim, Bo-Mi;Kim, Jin-a
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1052-1056
    • /
    • 2008
  • Crystal mean size and shape change of calcium carbonate crystal was investigated by the temperature change and addition of PAA solution in the soda process. At low temperature($30^{\circ}C$, $60^{\circ}C$), calcite particles were made by. But at high temperature($80^{\circ}C$), aragonite particles were made by. At $30^{\circ}C$ and $80^{\circ}C$, Crystal shape were not changed by adding PAA solution. At moderate temperature($60^{\circ}C$), aragonite was obtained by adding PAA aqueous solution. Crystal shape was changed by adding PAA molecules. The higher concentration of PAA solution is, the more aragonite particles were observed. Incase of calcite and aragonite, mean size of calcium carbonate crystals were increased by higher molecule weight and higher concentration of PAA solution. But in the shape change region, the molecule weight of PAA was the main parameter of increasing mean crystal size.

Dependence of defects on growth rate in (100) ZnSe cryseal ((100) ZnSe 결정에서 결함의 성장 속도에 대한 의존성)

  • 박성수;이성국;김준홍;한재용;이상학
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.2
    • /
    • pp.263-268
    • /
    • 1998
  • (100) ZnSe crystals with twin and grain free were grown by vapor transport method. The defect in (100) ZnSe crystals was investigated by FWHM of X-ray Rocking Curve. The growth rate and seed quality are the main parameters of the growth process to obtain the high quality ZnSe crystals. The geometric shape of the grown (100) ZnSe crystal is dependent on the shape of seed, isothermal line in furnace and the growth rate of each surface in crystal.

  • PDF

Numerical analysis of steady and transient processes in a directional solidification system

  • Lin, Ting-Kang;Lin, Chung-Hao;Chen, Ching-Yao
    • Coupled systems mechanics
    • /
    • v.5 no.4
    • /
    • pp.341-353
    • /
    • 2016
  • Manufactures of multi-crystalline silicon ingots by means of the directional solidification system (DSS) is important to the solar photovoltaic (PV) cell industry. The quality of the ingots, including the grain size and morphology, is highly related to the shape of the crystal-melt interface during the crystal growth process. We performed numerical simulations to analyze the thermo-fluid field and the shape of the crystal-melt interface both for steady conditions and transient processes. The steady simulations are first validated and then applied to improve the hot zone design in the furnace. The numerical results reveal that, an additional guiding plate weakens the strength of vortex and improves the desired profile of the crystal-melt interface. Based on the steady solutions at an early stage, detailed transient processes of crystal growth can be simulated. Accuracy of the results is supported by comparing the evolutions of crystal heights with the experimental measurements. The excellent agreements demonstrate the applicability of the present numerical methods in simulating a practical and complex system of directional solidification system.

The effect of grain shape on grain growth behavior of oxide system during liquid phase sintering (산화물계의 액상소결에서 입자 형상이 입자성장 거동에 미치는 영향)

  • 조동희;박상엽
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.3
    • /
    • pp.127-131
    • /
    • 2001
  • The effect of grain shape on the grain growth behavior of oxide system was investigated as afunction of liquid content during liquid phase sintering. As a model system, the solid grains of $Al_{2}O_{3}$ and MgO were selected during liquid phase sintering, i.e. faceted shape of $Al_{2}O_{3}$ in $CaAl_{2}Si_{2}O_{8}$ liquid phase and spherical shape of MgO in $CaMgSiO_{4}$ liquid phase. The average grain size of MgO with spherical shape was decreased with increasing the liquid phase content, whereas that of $Al_{2}O_{3}$ with faceted shape was independent of liquid phase content. In the case of $Al_{2}O_{3}$ grains with faceted shape, which interfaces are expected to be atomically flat, are likely to grow by the interfacial reaction controled process. Whereas, in the case of MgO grains with spherical shape, which interface are expected to be atomically rough, are likely to grow by the diffusion controlled process.

  • PDF