• 제목/요약/키워드: Crystal plasticity

검색결과 113건 처리시간 0.024초

스테인레스 강판의 가공특성과 성형성에 관한 고찰 (Review of Formability and Forming Property for Stainless Steel)

  • 김영석;박진기;안덕찬;김영환
    • 소성∙가공
    • /
    • 제20권3호
    • /
    • pp.193-205
    • /
    • 2011
  • Because of its rustproof property, stainless steel is widely used in kitchen appliances, building materials, electronics, chemical plants and automobile exhausts. In addition, the utilization of stainless steel for fuel cell application is growing. As the demand for this material increases, it is necessary to study the basic properties of stainless steel such as corrosion resistance, heat transfer, formability, cutting or shearing ability and weldability. In this article, the mechanical properties, formability and press forming performance of stainless steel are reviewed. Since temperature and strain rate affect the press forming performance of STS304(austenitic) stainless steel, the influence of these parameters on the plastic behavior should be investigated. Moreover, measures for the prevention of ridging of STS430(ferritic) and delayed fracture of STS430, which respectively appear during and after press forming, should be considered. Recently, stainless steel sheets with a thickness lower than 0.2 mm have been widely used in applications for mobile phone, digital camera and fuel cell separator. Therefore, there is a growing interest of studying the grain size effect and plasticity at the crystal scale in order to understand the anisotropic behavior and micro forming ability of thin sheets. This review paper was written with the objective of helping engineers and researchers to understand the forming characteristics of stainless steel and to establish standards in plastic forming techniques.

Zr계 벌크 비정질 복합재의 변형률 속도에 따른 인장 변형 거동 연구 (Tensile Deformation Behavior of Zr-based Bulk Metallic Glass Composite with Different Strain Rate)

  • 김규식;김지식;허훈;이기안
    • 소성∙가공
    • /
    • 제18권6호
    • /
    • pp.500-507
    • /
    • 2009
  • Tensile deformation behavior with different strain rate was investigated. $Zr_{56.2}Ti_{13.8}Nb_{5.0}Cu_{6.9}Ni_{5.6}Be_{12.5}$(bulk metallic glass alloy possessed crystal phase which was called $\beta$-phase of dendrite shape, mean size of $20{\sim}30{\mu}m$ and occupied 25% of the total volume) was used in this study. Maximum tensile strength was obtained as 1.74GPa at strain rate $10^2s^{-1}$ and minimum strength was found to be 1.6GPa at $10^{-1}s^{-1}$. And then, maximum plastic deformation occurred at the strain rate of $5{\times}10^{-2}s^{-1}$ and represented 1.75%, though minimum plastic deformation showed 0%. In the specific range of strain rate, relatively higher plastic deformation and lower ultimate tensile strength were found with lots of shear bands. The fractographical observation after tensile test indicated that vein like pattern on the fracture surface was well developed especially in the above range of strain rate.

강소성 유한요소법에서의 다결정 모델의 구현 (Implementation of Polycrystal Model in Rigid Plastic Finite Element Method)

  • 강경필;이경훈;김용환;신광선
    • 소성∙가공
    • /
    • 제26권5호
    • /
    • pp.286-292
    • /
    • 2017
  • Magnesium alloy shows strong anisotropy and asymmetric behavior in tension and compression curve, especially at room temperature. These characteristics limit the application of finite element method (FEM) which is based on conventional continuum mechanics. To accurately predict the material behavior of magnesium alloy at microstructural level, a methodology of fully coupled multiscale simulation is presented and a crystal plasticity model as a constitutive equation in the simulation of metal forming process is introduced in this study. The existing constitutive equation for rigid plastic FEM is modified to accommodate deviatoric stress component and its derivatives with respect to strain rate components. Viscoplastic self-consistent (VPSC) polycrystal model was selected as a constitutive model because it was regarded as the most robust model compared to Taylor model or Sachs model. Stiffness matrix and load vector were derived based on the new approach and implemented into $DEFORM^{TM}-3D$ via a user subroutine handling stiffness matrix at an elemental level. The application to extrusion and rolling process of pure magnesium is presented in this study to assess the validity of the proposed multiscale process.

ECAP가공에 의한 초미세립 소재의 기계적 물성 (Mechanical Properties of Ultrafine Grained Materials via Equal-Channel Angular Pressing)

  • 고영건;김우겸;안정용;박경태;이종수;신동혁
    • 소성∙가공
    • /
    • 제15권2호
    • /
    • pp.105-111
    • /
    • 2006
  • A study was made to investigate the microstructure and the mechanical properties of low-carbon steel, Al-Mg alloy and Ti-6Al-4V alloy each representing bcc, fcc and hcp crystal structures, respectively fabricated by equal-channel angular(ECA) pressing. After a series of ECA pressings was performed, most grains were significantly refined below ${\mu}m$ in diameter with high mis-orientation of grain boundaries irrespective of different crystal structure used. Regarding the strain hardening capability, tensile tests of ultrafine grain (UFG) dual-phase (ferrite/martensite) steel which was different from UFG ferrite-pearlite steel were carried out at ambient temperature, and corresponding mechanical properties were discussed in relation to modified C-J analysis. Low-temperature and/or high strain-rate superplasticity of the UFG Al-Mg alloy and UFG Ti-6Al-4V alloy were also studied. Based on the analysis used in this study, it was concluded that UFG alloys exhibited the enhanced mechanical properties as compared to coarse-grained (CG) counterparts.

MEMS 공정을 이용한 단결정 실리콘 미세 인장시편과 미세 변형 측정용 알루미늄 Marker의 제조 (Fabrication of Single Crystal Silicon Micro-Tensile Test Specimens and Thin Film Aluminum Markers for Measuring Tensile Strain Using MEMS Processes)

  • 박준식;전창성;박광범;윤대원;이형욱;이낙규;이상목;나경환;최현석
    • 소성∙가공
    • /
    • 제13권3호
    • /
    • pp.285-289
    • /
    • 2004
  • Micro tensile test specimens of thin film single crystal silicon for the most useful structural materials in MEMS (Micro Electro Mechanical System) devices were fabricated using SOI (Silicon-on-Insulator) wafers and MEMS processes. Dimensions of micro tensile test specimens were thickness of $7\mu\textrm{m}$, width of 50~$350\mu\textrm{m}$, and length of 2mm. Top and bottom silicon were etched using by deep RIE (Reactive Ion Etching). Thin film aluminum markers on testing region of specimens with width of $5\mu\textrm{m}$, lengths of 30~$180\mu\textrm{m}$ and thickness of 200 nm for measuring tensile strain were fabricated by aluminum wet etching method. Fabricated side wall angles of aluminum marker were about $45^{\circ}~50^{\circ}$. He-Ne laser with wavelength of 633nm was used for checking fringed patterns.

석탄 바닥재와 점토를 이용한 인공경량골재 제조 (Manufacturing artificial lightweight aggregates using coal bottom ash and clay)

  • 김강덕;강승구
    • 한국결정성장학회지
    • /
    • 제17권6호
    • /
    • pp.277-282
    • /
    • 2007
  • 화력발전소에서 발생하는 석탄 바닥재(bottom ash)와 점토를 혼합하여 성형 후, 소성하여 인공경량골재를 제조하고, 소성온도와 조성 변화에 따른 물성을 분석하였다. 바닥재는 입경이 4.75mm 이상인 입자가 13wt% 정도로 거친 분말로 압출성형을 위하여 미분쇄 공정이 필요하였다. 또한 바닥재는 미연탄소(C)를 다량 함유하고 있어 소결 시 C의 산화반응과 이에 따른 가스발생으로 소결체의 경량화를 유도하였다. 점토에 바닥재 첨가량이 증가할수록 소성 지수가 감소하였고 이에 따라 성형체의 성형성이 저하되었으나 바닥재 첨가량이 40wt% 까지의 성형체는 소성 지수 및 소성 한계값이 각각 약 10과 22로서 압출성형이 가능하였다. 바닥재가 $30{\sim}50wt%$ 첨가되고 $1150{\sim}1200^{\circ}C$ 범위에서 소결된 골재는 부피비중 $1.3{\sim}1.5$, 흡수율 $14{\sim}16%$를 나타냈고 따라서 고층빌딩이나 교량 등의 골재대체재로써의 가능성이 확인되었다.

소성 구배의 영향을 고려한 다결정 고체 내부의 결정 거동 분석 (Evaluation of Effect of Plastic Gradient on the Behavior of Single Grain inside Polycrystalline Solids)

  • 정상엽;한동석
    • 한국방재학회 논문집
    • /
    • 제11권2호
    • /
    • pp.39-44
    • /
    • 2011
  • 마이크로 스케일에서 다결정 재료의 소성 거동을 살펴볼 때, 결정의 geometrically necessary dislocation(GND) 효과에 의한 소성 구배(plastic gradient)를 고려하는 것은 재료의 소성 거동에 큰 영향을 줄 수 있다. 이러한 영향을 확인하기 위하여, 본 연구에서는 소성 구배의 영향을 고려한 다결정 고체(polycrystalline solids)의 거동을 유한요소해석을 이용하여 살펴보았다. 소성 구배의 영향을 살펴보기 위해 구배 경화 계수(gradient hardness coefficient)와 먼 거리 변형률에 대한 재료 길이 변수 (material length parameter)가 사용되었다. 재료 길이 변수에 의한 영향을 확인하기 위해, 재료 길이 변수의 차이에 따른 다결정 고체의 거동을 분석하였다. 또한 소성 구배 효과의 고려 및 재료 길이 변수에 따른 다결정 고체 내부에 위치한 단결정이 받는 영향을 살펴보았다. 재료 길이 변수에 따라 결정이 받는 영향을 비교하여, GND에 의한 다결정 고체 거동의 영향을 확인하였다.

LCD Monitor사출금형에 대한 연구 (A Study of the Injection Mould of LCD Monitor)

  • 문영대
    • 소성∙가공
    • /
    • 제14권4호
    • /
    • pp.360-367
    • /
    • 2005
  • The injection-molded plastic parts have many surface defects: warpage, weldline, flowmark, zetting, scratching, shading and so on. As weldline was one of the major surface defects in the case of desktop monitor, warpage and surface shrinkage are the bigger problems of LCD monitor in the pursuit of light weight and thinner thickness of parts. Some measures to improve these defects were introduced in this paper. Based on these, the laboratory work to find out the optimum processing conditions and to get the best parts was repeated injection moulding try-out after reflecting these improvements. The defects of warpage and surface shrinkage was significantly improved after the improvements in the case of the 20.1 inch even if in the 15 and 17inch case the warpage size was a lttle over the allowed specification because of not taking the measure for parts design within the allowable limits from the required specification in the cause of cost down.

분자동력학을 이용한 결정립 제어 레오로지 소재의 나노 변형거동 전산모사 (Molecular Dynamics Simulation of Nano-Deformation Behavior of the Grain-Size Controlled Rheology Material)

  • 김정원;윤성원;강충길
    • 소성∙가공
    • /
    • 제14권4호
    • /
    • pp.319-326
    • /
    • 2005
  • In this study, the nano-deformation behavior of semi-solid Al-Si alloy was investigated using a molecular dynamics simulation as a part of the research on the surface crack behavior in thixoformed automobile parts. The microstructure of the grain-size controlled Al-Si alloy consists of primary and eutectic regions. In eutectic regions the crack initiation begins with initial fracture of the eutectic silicon particles and inside other intermetallic phases. Nano-deformation characteristics in the eutectic and primary phase of the grain-size controlled Al-Si alloy were investigated through the molecular dynamics simulation. The primary phase was assumed to be single crystal aluminum. It was shown that the vacancy occurred at the zone where silicon molecules were.

SCS Micro-lens 패턴 적용 휴대폰 도광판 제작용 미세금형 제작에 대한 연구 (A Study on the Fabrication Method of Micro-Mold using 2.2inch LGP by the SCS Micro-Lens Pattern)

  • 오정길;김종선;윤경환;황철진
    • 소성∙가공
    • /
    • 제20권1호
    • /
    • pp.60-63
    • /
    • 2011
  • BLU(back light unit) is one of kernel parts of LCD(liquid crystal display) unit. New 3-D micro-lens pattern for LGP(light guide plate), one of the most important parts of LCD-BLU, had been researched. Instead of dot pattern made by chemical etching or laser ablation, SCS(slanted curved surface) micro-lens pattern was designed with optical CAE simulation. This study introduce the method of design using optical CAE simulation for SCS micro-lens, the new fabrication method of micro-mold with SCS micro-lens pattern.