• 제목/요약/키워드: Crystal phase

검색결과 1,919건 처리시간 0.036초

미립액상 분말에 의한 $YBa_{2}Cu_{3}O_{x}$ 초전도체의 PECVD 증착법 (A study on the $YBa_{2}Cu_{3}O_{x}$ phase deposition by liquid aerosol PECVD)

  • 정용선;오근호
    • 한국결정성장학회지
    • /
    • 제6권2호
    • /
    • pp.229-237
    • /
    • 1996
  • 액상의 미립자를 이용하여 저온 플라즈마 반응로 안에서 $YBa_{2}Cu_{3}O_{x}$ 초전도체상을 MgO 단결정 위에 in-situ 증착하였다. 금속화합물의 용해도, 분해온도와 용매의 증기압이 이공정 방법에서 중용한 인자로 나타났으며, 초전도체상의 증착실험 조건은 산소분압이 0.3에서 2.7 kPa, 증착온도가 $800^{\circ}C$에서 $940^{\circ}C$까지이었다. 초전도체상을 위한 최적의 증착조건은 CuO 상전이선에 근접하게 나타났다.

  • PDF

고분자 안정화 블루상 액정셀의 전기광학특성 향상을 위한 지그재그 형태 전극 설계 (Zig-zag electrode pattern for improvement of electro-optic characteristic in polymer stabilized blue phase liquid crystal cell)

  • 강완석;문병준;이기동
    • 한국정보통신학회논문지
    • /
    • 제15권1호
    • /
    • pp.183-187
    • /
    • 2011
  • 고분자 안정화 블루상 액정셀(Polymer-stabilized blue phase liquid crystal cell)은 ${\mu}s$ 단위의 응답속도와 광시야각 및 액정의 배향을 위한 문지름 과정이 필요 없는 장점이 있다. 그러나 높은 구동전압과 낮은 kerr 상수값으로 인해 유도되는 복굴절의 값이 낮아 고분자 안정화 블루상 액정셀의 전기광학특성을 저해하는 요인이 되었다. 본 논문에서는 지그재그 형태의 전극 구조를 제안하고 시뮬레이션을 통하여 제안된 전극 구조를 가지는 액정셀의 투과율 손실 없이 구동전압을 25%이상 낮출 수 있음을 확인하였다.

$90^{\circ}C$위상차의 이축하중 하에서 A17075-T651의 부가적 손상에 관한 결정구조 의존성에 관한 연구 (Additional Damage of A17075-T651 under $90^{\circ}C$ Out-of phase Biaxial Loading from Crystal Structure Dependence)

  • 이현우;오세종
    • 대한기계학회논문집A
    • /
    • 제21권1호
    • /
    • pp.104-111
    • /
    • 1997
  • Accounting for the additional damages come out from non-proportional loading path effect, material damage according to crystal structure dependence was studied. Microscopic observations of damaged material by SEM(Scanning Electron Microscope) showed crystal structure dependence. Biaxial in-phase loaded specimens showed the slips of same direction, which pararell each other, but biaxial 90.deg. out-of-phase loaded specimens showed multiply crossed slips. S. H. Doong and D. F. Socie reported that wavy/planar or planar slip material showed the increase in the cyclic hardening level during non-proportional cycling. From these results, the additional hardening and non-proportional loading effects were related with slip mechanism, and the slip mechanism was related with crystal structure. In the present study, a damage mechanism which accounts for the non-proportional loading effect from crystal structure dependence was considered and applied to A17075-T651.

Three-Dimensional Automated Crystal Orientation and Phase Mapping Analysis of Epitaxially Grown Thin Film Interfaces by Using Transmission Electron Microscopy

  • Kim, Chang-Yeon;Lee, Ji-Hyun;Yoo, Seung Jo;Lee, Seok-Hoon;Kim, Jin-Gyu
    • Applied Microscopy
    • /
    • 제45권3호
    • /
    • pp.183-188
    • /
    • 2015
  • Due to the miniaturization of semiconductor devices, their crystal structure on the nanoscale must be analyzed. However, scanning electron microscope-electron backscatter diffraction (EBSD) has a limitation of resolution in nanoscale and high-resolution electron microscopy (HREM) can be used to analyze restrictive local structural information. In this study, three-dimensional (3D) automated crystal orientation and phase mapping using transmission electron microscopy (TEM) (3D TEM-EBSD) was used to identify the crystal structure relationship between an epitaxially grown CdS interfacial layer and a $Cu(In_xGa_{x-1})Se_2$ (CIGS) solar cell layer. The 3D TEM-EBSD technique clearly defined the crystal orientation and phase of the epitaxially grown layers, making it useful for establishing the growth mechanism of functional nano-materials.

A ROBUST AND ACCURATE PHASE-FIELD SIMULATION OF SNOW CRYSTAL GROWTH

  • Li, Yibao;Lee, Dong-Sun;Lee, Hyun-Geun;Jeong, Da-Rae;Lee, Chae-Young;Yang, Dong-Gyu;Kim, Jun-Seok
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제16권1호
    • /
    • pp.15-29
    • /
    • 2012
  • In this paper we introduce 6-fold symmetry crystal growth using new phase-field models based on the modified Allen-Cahn equation. The proposed method is a hybrid method which uses both analytic and numerical solutions. We then show this method can be extended to $k$-fold case. The Wulff construction procedure is provided to understand and predict the shape of crystals. We also present a detailed mathematical proof of the validity of the Wulff construction. For computational results, we verify the accuracy and efficiency of the method for snow crystal growth.

Effect of Crystal Shape on the Grain Growth during Liquid Phase Sintering of Ceramics

  • Jo, Wook;Hwang, Nong-Moon;Kim, Doh-Yeon
    • 한국세라믹학회지
    • /
    • 제43권11호
    • /
    • pp.728-733
    • /
    • 2006
  • The equilibrium or growth shape of ceramic materials is classified largely into two categories according to the thermodynamic conditions imposed. One is a polyhedral shape where the surface free energy is anisotropic, and the other a spherical shape where the surface free energy is isotropic. In the case of grains with a polyhedral shape of anisotropic surface free energy, socalled abnormal grain growth usually takes place due to a significant energy barrier for a growth unit to be attached to the crystal surface. In the case of grains with a spherical shape of isotropic surface free energy, however, normal grain growth with a uniform size distribution takes place. In this contribution, the state-of-the-art of our current understanding of the relationship between the crystal shape and the microstructure evolution during the sintering of ceramic materials in the presence of a liquid phase was discussed.

Dispersion and Nonlinear Properties of Elliptical Air Hole Photonic Crystal Fiber

  • Rao, MP Srinivasa;Singh, Vivek
    • Current Optics and Photonics
    • /
    • 제2권6호
    • /
    • pp.525-531
    • /
    • 2018
  • The effect of eccentricity on dispersion and nonlinear properties of a photonic crystal fiber having elliptical air holes is investigated using a fully vectorial effective index method. It is found that the effective refractive index increases with increase of eccentricity. The dependence of dispersion and nonlinear properties of the PCF on the eccentricity of the air hole is investigated. It is revealed that eccentricity of the air hole affects the zero dispersion wavelength. Further, the nonlinear properties such as mode field area, nonlinear coefficient and self phase modulation of the Photonic crystal fibers are analyzed. The mode field area increases and the nonlinear coefficient decreases with increase in eccentricity. The variation of the self phase modulation with elliptical air hole is also discussed.

Stability of the growth process at pulling large alkali halide single crystals

  • V.I. Goriletsky;S.K. Bondarenko;M.M. Smirnov;V.I. Sumin;K.V. Shakhova;V.S. Suzdal;V.A. Kuznetzov
    • 한국결정성장학회지
    • /
    • 제13권1호
    • /
    • pp.5-14
    • /
    • 2003
  • Principles of a novel pulse growing method are described. The method realized in the crystal growing on a seed from melts under raw melt feeding provided a more reliable control of the crystallization process when producing large alkali halide crystals. The slow natural convection of the melt in the crucible at a constant melt level is intensified by rotating the crucible, while the crystal rotation favors a more symmetrical distribution of thermal stresses over the crystal cross-section. Optimum rotation parameters for the crucible and crystal have been determined. The spatial position oi the solid/liquid phase interface relatively to the melt surface, heaters and the crucible elements are considered. Basing on that consideration, a novel criterion is stated, that is, the immersion extent of the crystallization front (CF) convex toward the melt. When the crystal grows at a <> CF immersion, the raised CF may tear off from the melt partially or completely due to its weight. This results in avoid formation in the crystal. Experimental data on the radial crystal growth speed are discussed. This speed defines the formation of a gas phase layer at the crystal surface. The layer thickness il a function of time a temperature at specific values of pressure in the furnace and the free melt surface dimensions in the gap between the crystal and crucible wall. Analytical expressions have been derived for the impurity component mass transfer at the steady-state growth stage describing two independent processes, the impurity mass transfer along the <> path and its transit along the <> one. The heater (and thus the melt) temperature variation is inherent in any control system. It has been shown that when random temperature changes occur causing its lowering at a rate exceeding $0.5^{\circ}C/min$, a kind of the CF decoration by foreign impurities or by gas bubbles takes place. Short-term temperature changes at one heater or both result in local (i.e., at the front) redistribution of the preset axial growth speed.

Effect of Liquid Crystal Structures on olymerization-induced Phase Separation Behavior by Simultaneous Resistivity and Turbidity Measurement

  • Park, Su-Cheol;Lee, Sang-Sub;Hong, Jin-Who
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.886-889
    • /
    • 2007
  • Photopolymerization and phase separation behavior during the PDLC formation process were investigated by simultaneous resistivity and turbidity measurement. Using this experimental method, we investigated the effect of liquid crystal structure on photopolymerization and phase separation behavior.

  • PDF

새로운 응고 모델을 적용한 Czocgralski 단결정 성장 공정 모사 (The Transient Simulation of Czochralski Single Crystal Growth Process Using New Solidification Model)

  • 이경우;윤종규
    • 한국결정성장학회지
    • /
    • 제1권1호
    • /
    • pp.74-81
    • /
    • 1991
  • Czochralski 단결정 성장계에서 유체동의 표면 복사열전달을 고려하여 온도분포를 모사하였다. 복사열전달 고려시 표면요소들의 view factor를 고려하였다. 고-액의 2상은 고상에 가상적으로 매우 큰 점성을 부여하여 연속의 단상으로 처리하였으며 응고시 잠열은 반복열량 방출법을 개발하여 처리하였다. 본 연구에서 개발한 응고 모델을 증명하기 위하여 Ca 금속의 용융에 적용하여 실험결과와 비교한 결과 잘 맞는다는 것을 알아낸 후 본 모사 프로그램을 Cz계에서 Al금속의 단결정 성장에 적용하였다.

  • PDF