• Title/Summary/Keyword: Crystal growth mechanism

Search Result 182, Processing Time 0.021 seconds

Coarsening Advantage of Twinned BaTiO3 Seed Particle

  • Jin, Hong-Ri;Jo, Wook;Hwang, Nong-Moon;Kim, Doh-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.9 s.280
    • /
    • pp.599-601
    • /
    • 2005
  • The coarsening process of two different $BaTiO_3$ single crystal seeds, one with a (111) double twin and the other without it, was investigated. Due to the presence of Twin Plane Reentrant Edge (TPRE), the coarsening rate of the twinned seed crystal was significantly higher than that without a twin. For the coarsening by the 2-dimensional nucleation and lateral growth, the energy barrier for nucleation at the TPRE was analyzed to be about a half compared with that at the terrace planes.

Formation Mechanism of Aragonite by Substitute of Mg2+ Ions

  • Choi, Kyung-Sun;Park, Jin-Koo;Ahn, Ji-Whan;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.12 s.271
    • /
    • pp.889-892
    • /
    • 2004
  • Acicular type aragonite precipitated calcium carbonate was synthesized by carbonation reaction of $Ca(OH)_2$ slurry and $CO_2$ gas. As increasing the initial concentration of $Mg^{2+}$ ion, calcite crystal phase substantially decreased while that of aragonite crystal phase increased. According to XRD and EDS analysis, it was found that the addition of $MgCl_2$ induced the $Mg^{2+}$ ion to substitute in $Ca^{2+}$ ion site of calcite lattice then the unstabled calcite structure be resolved, consequently the growth of calcite structure is interrupted while the growth of aragonite structure is expedited.

Facile Precipitation Method for Morphological Tuning of Cu2O Crystals

  • Cho, Young-Sik;Huh, Young-Duk
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3239-3243
    • /
    • 2014
  • We have developed a simple method for tuning the morphologies of $Cu_2O$ microcrystals. $Cu_2O$ microcrystals were prepared by precipitation at room temperature from a mixture of $Cu(CH_3COO)_2{\cdot}H_2O$, N,N,N',N'-tetramethyl ethylenediamine (TMEDA), ascorbic acid, and polyethylene glycol (PEG). TMEDA was used to promote the formation of copper-TMEDA complexes. A variety of $Cu_2O$ microcrystal morphologies were obtained simply by varying the concentrations of TMEDA and ascorbic acid. Aggregated $Cu_2O$ microspheres are formed at higher concentrations of ascorbic acid in the absence of TMEDA. Aggregated $Cu_2O$ microcubes are formed at lower concentrations of ascorbic acid and higher concentrations of TMEDA. The crystal growth mechanism of these $Cu_2O$ morphologies is explained.

Defect formation mechanism of 6H-SiC crystals grown by sublimation method

  • Kim, Hwa-Mok;Kyung Joo;Auh, Keun-Ho
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.09a
    • /
    • pp.35-40
    • /
    • 1998
  • There have two kinds of defects, planar defects and vertical defects which were called micropipes in SiC bulk crystals grown by a sublimation method. We could decrease these defects by adding a little piece of Si in the SiC powder or using Ta cylinder in the crucible. so were report the dependence of these defects in a wafer on silicon/carbon ratio in this paper. The chemical species sublimed from SiC powder is affected by carbon from the graphite wall of the crucible. It is important to control the chemical species on the substrate.

  • PDF

The Mechanism of Gold Deposition by Thermal Evaporation

  • Mark C. Barnes;Kim, Doh-Y.;Nong M. Hwang
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.127-142
    • /
    • 2000
  • The charged cluster model states that chemical vapor deposition (CVD) begins with gas phase nucleation of charged clusters followed by cluster deposition on a substrate surface to form a thin film. A two-chambered CVD system, separated by a 1-mm orifice, was used to study gold deposition by thermal evaporation in order to determine if the CCM applies in this case. At a filament temperature of 1523 and 1773 K, the presence of nano-meter sized gold clusters was found to be positive and the cluster size and size distribution increased with increasing temperature. Small clusters were found to be amorphous and they combined with clusters already deposited on a substrate surface to form larger amorphous clusters on the surface. This work revealed that gold thin films deposited on a mica surface are the result of the sticking of 4-10 nm clusters. The topography of these films was similar to those reported previously under similar conditions.

  • PDF

The Effect of V/III Ratio on Growth Mechanism of Gas Source MBE (가스소스 MBE에서 원료공급량이 결정성장 기구에 미치는 영향)

  • Choi, Sungkuk;Yoo, Jinyeop;Jung, Soohoon;Chang, Wonbeom;Chang, Jiho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.6
    • /
    • pp.446-450
    • /
    • 2013
  • Growth mechanism of GS-MBE(Gas source-Molecular Beam Epitaxy) has been investigated. We observed that the growth rate of GaN films is changing from 520 nm/h to 440 nm/h by the variation of V/III ratio under nitrogen-rich growth condition. It was explained that the amount of hydrogen on the growth front varies by the ammonia flow, and gallium hydrides are generated on the surface by a reaction of hydrogen and gallium, resultantly the amount of gallium supplying is changing along with the $NH_3$ flow. Reflection high energy electron diffraction (RHEED) observation was used to confirm the N-rich condition. The crystal quality of GaN was estimated by photoluminescence (PL) and X-ray diffraction (XRD).

Three-Dimensional Automated Crystal Orientation and Phase Mapping Analysis of Epitaxially Grown Thin Film Interfaces by Using Transmission Electron Microscopy

  • Kim, Chang-Yeon;Lee, Ji-Hyun;Yoo, Seung Jo;Lee, Seok-Hoon;Kim, Jin-Gyu
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.183-188
    • /
    • 2015
  • Due to the miniaturization of semiconductor devices, their crystal structure on the nanoscale must be analyzed. However, scanning electron microscope-electron backscatter diffraction (EBSD) has a limitation of resolution in nanoscale and high-resolution electron microscopy (HREM) can be used to analyze restrictive local structural information. In this study, three-dimensional (3D) automated crystal orientation and phase mapping using transmission electron microscopy (TEM) (3D TEM-EBSD) was used to identify the crystal structure relationship between an epitaxially grown CdS interfacial layer and a $Cu(In_xGa_{x-1})Se_2$ (CIGS) solar cell layer. The 3D TEM-EBSD technique clearly defined the crystal orientation and phase of the epitaxially grown layers, making it useful for establishing the growth mechanism of functional nano-materials.

Characterization of alpha-Ga2O3 epilayers grown on cone-shape patterned sapphire substrate by halide vapor phase epitaxy (원뿔 형태의 patterned sapphire substrate 위에 성장한 α-Ga2O3의 특성분석)

  • Son, Hoki;Choi, Ye-Ji;Lee, Young-Jin;Kim, Jin-Ho;Kim, Sun Woog;Ra, Yong-Ho;Lim, Tae-Young;Hwang, Jonghee;Jeon, Dae-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.4
    • /
    • pp.173-178
    • /
    • 2019
  • In this study, we demonstrated a characterization of ${\alpha}-Ga_2O_3$ grown on a cone-shape patterned sapphire substrate by using the halide vapor phase epitaxy. An ${\alpha}-Ga_2O_3$ was grown on different size of PSS and c-plane sapphire substrate for comparison to confirm the effect of PSS. In addition, growth time of ${\alpha}-Ga_2O_3$ was gradually increased to confirm growth mechanism of ${\alpha}-Ga_2O_3$ grown on the PSS. A growth temperature was changed to $470-550^{\circ}C$. It can be analyzed growth conditions and mechanisms on the cone-shape PSS, resulting in a significant decrease in the FWHM value of an asymmetric plane (10-14) of ${\alpha}-Ga_2O_3$, due to lateral growth that occurs during the growth process.

A study on the lattice defects in $LiNbO_3$ single crystal by crystal by $OH^-$ absorption band ($OH^-$ 흡수밴드에 의한 $LiNbO_3$ 단결정의 격자결함에 관한 연구)

  • 조용석;강길영;윤종규
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.401-406
    • /
    • 1998
  • For the applications in optical waveguides and devices, LiNbO_3$ single crystals need to overcome the weakness of optical damage due to the inhomogeneities of laser-induced refractive index. This problem can be solved by doping of Mg in LiNbO_3$ and proton exchange of LiNbO_3$. In this study, to understand the mechanism of optical damage resistance in LiNbO_3$, the changes of lattice defects in LiNbO_3$ caused by MgO doping and acid treatment were observed indirectly by $OH^-$ absorption bands using a FT-IR spectrophotometer. The effect of lattice defects on temperature, heat-treatment and polishing were also investigated. It is shown that MgO doping increases optical damage resistance by generating the defects of $Mg_{Nb}^{2+}$ in the lattice of LiNbO_3$, and that proton exchange by implantation of $H^+$ ion in the hexagonally closest packed oxygen layers on the surface of LiNbO_3$, makes lattice defects, which diffuse into the crystal after heat-treatment above $400^{\circ}C$.

  • PDF

A study on the gas reaction mechanism in catalyst/$SnO_2$ gas sensor (촉매/$SnO_2$ 가스 센서의 반응 구조에 관한 연구)

  • 이재홍;김창교;김진걸;조남인;김덕준
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.2
    • /
    • pp.276-283
    • /
    • 1997
  • A dry impregnation method was used for preparing pellet type Pt/$SnO_2$ gas sensor. The crystal structure, direction of the crystal, crystal size and microstructure between the catalyst and the support ($SnO_2$) were characterized with electron diffraction analysis, transmission electron microscopy, scanning electron microscopy. The characterization indicates that when Pt/$SnO_2$ sample is calcined at $400^{\circ}C$, the Cl content associated with the Pt phase diminishes and the part of Pt is moved into $SnO_2$ support. This results in the enhancement of gas sensitivity. After the reactor with a Pt/$SnO_2$ sample was run with a flow rate of 30 sccm (a mixture of 0.5% $H_2$ in $_N2$) for a while, the resistance of $SnO_2$ was saturated, but the $SnO_2$ kept absorbing $H_2$ gas. This indicates that the surface state was saturated. For the 14 ppm $H_2$ gas, the sensitivity of Pt/$SnO_2$ devices was about 81% at an operating temperature of $300^{\circ}C$.

  • PDF