• Title/Summary/Keyword: Crystal grain size

Search Result 293, Processing Time 0.025 seconds

Effects of post-annealing and seeding layers on electrical properties of PLT thin films by MOCVD using ultrasonic spraying (후열처리 및 seeding 층이 초음파분무 MOCVD법에 의한 PLT 박막 제조 시 전기적 특성에 미치는 영향)

  • 이진홍;김기현;박병옥
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.5
    • /
    • pp.247-252
    • /
    • 2002
  • $(Pb_{1-x}La_x)TiO_3$ (x = 0.1) thin films were prepared on ITO-coated glass substrates by metal organic chemical vapor deposition using ultrasonic spraying. Effects of the post-annealing and the seeding layer on crystallization, microstructures and electrical properties of thin films were investigated. Dielectric constants of films increased due to the modification of crystallization and the changing of a surface morphology by applying the post-annealing. In addition, as the application of PT seed- ing layer offered nucleation sites to PLT thin films, electrical properties of films were enhanced by the increase of crys-tallinity and grain size. The dielectric constant of the films post-heated for 60 min and with a seeding layer was 213 at 1 kHz.

Effects of gas pressure sintering (GPS) conditions on the mechanical properties of silicon nitride (가스압 소결(GPS) 조건이 질화규소의 기계적 특성에 미치는 영향)

  • 이수완;김성호;정용선
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.4
    • /
    • pp.619-625
    • /
    • 1997
  • $Si_3N_4$ powder with 2 wt% $Al_2O_3$ and 6 wt% $Y_2O_3$additives was gas pressure sintered (GPS). Characterization of the mechanical properties was compared with sintering conditions (temperature, pressure, time). Based on experimental result , the optimal condition of gas pressure sintering was found at $1900^{\circ}C$, 3 MPa for 1 hour. It is assumed that mechanical properties were degraded due to the grain coasening effects with increasing temperature or holding time. However, the grain size was decreased with increasing pressure, resulted in better strength, but lower fracture toughness. Present results suggested that optimization of processing parameters was impotant for better mechanical properties of $Si_3N_4$.

  • PDF

Deposition characteristics of (Ba,Sr) $RuO_3$ thin films prepared by ultrasonic spraying deposition (초음파 분무 증착법으로 제조한(Ba,Sr) $RuO_3$ 산화물 전극의 증착 특성)

  • 홍석민;임성민;박흥진;김옥경
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.3
    • /
    • pp.111-114
    • /
    • 2001
  • (Ba,Sr) $RuO_3$ thin films were fabricated on Si(100) wafer by metal organic chemical vapor deposition using ultrasonic spraying. When the substrate temperature was varied, the BSR thin films showed good crystallinity above 50$0^{\circ}C$ and showed (110) preferred orientation by X-ray diffraction measurements. The surface morphology, determined by atomic force microscopy, indicated that the grain size of BSR thin films depended strongly on the Ba/Sr ratio. With the increase in the amount of Sr relative to Ba, the resistivity of BSR films decreased fro m415 to 261 $\mu$$\Omega$${\cdot}$cm.

  • PDF

Development of molybdenum silicides for hydrogen fueled combustion turbine by mechanical alloying (기계적 합금화에 의한 수소연소 터어빈용 Mo-Si계 금속간화합물의 개발에 관한 연구)

  • 이충효
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.4
    • /
    • pp.665-672
    • /
    • 1997
  • We applied mechanical alloying process by ball milling to produce molybdenum silicides $MoSi_2$ and $Mo_5Si_3$ using a mixture of elemental molybdenum and silicon powders at room temperature. The intermetallic compound MoSi$_3$ have been obtained by ball milling of $Mo_{33}Si_{67}$ mixture powders for 100 h, which is transformed to single $MoSi_2$ phase by subsequent heat treatment up to $725^{\circ}C$. The grain size of the $MoSi_2$ powders thus obtained was 19 nm, being approximately four times smaller than that of the commercial alloy. The intermetallic compound $MoSi_2$ with grain size of 30 nm have been also obtained by ball milling of $Mo_{62}Si_{38}$ mixture powders for 500 h, which is transformed to single $MoSi_2$ phase by heating up to $1000^{\circ}C$. We believe that the retarded ball milling time for the formation of $MoSi_2$ phase is attributed to its complicated crystal structure and large unit cell. The finer grain size in the ball-milled molybdenum silicides powders is expected to improve room-temperature mechanical properties for high-temperature structural materials.

  • PDF

Mineralogy and Genesis of Hydrothermal Deposits in the South-eastern Part of Korean Peninsula:(2) Bobae Sericite Deposits (우리나라 동남부 지역의 열수광상에 대한 광물학적 및 광상학적 연구:(2) 보배견운모 광상)

  • 김수진;추창오;박희인;노진환
    • Journal of the Mineralogical Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.129-140
    • /
    • 1991
  • Two illite polytypes, 2M1 and 1Md, have been identified from the sericite deposits of the Bobae mine, Kimhae, Kyungsangnam-do. Each polytype has characteristic grain size, chemical composition, and occurrence. 2M1 illite occurs predominantly in the sericitic alteration zone, while 1Md illite occurs predominantly in the propylitic alteration zone, implying that the former was formed in the higher temperature than the latter. Illites can be subdivided into two types based on their crystal sizes;(1) the $\mu\textrm{m}$-sized illite which is below 0.01mm(100$\mu\textrm{m}$) in size and consists of 2M1 and 1Md type, (2) the mm-sized illite which is above 0.01mm in size and consists only of 2M1 type. Especially illite below 1$\mu\textrm{m}$ is premominantly of 1Md type. Therefore, it seems likely that illite crystal size is to some extent related to the polytype. XRD data show that there is no interstratified layer in illites regardless of the crystal size and polytype. Activity of muscovite component of the $\mu\textrm{m}$-sized illite is 0.843 while that of the mm-sized illite is 0.790. However, the latter is more similar to muscovite in crystal structure than the former is. The mm-sized illite has less Al and more Kthan the $\mu\textrm{m}$-sized illite. In both illites, Si contents show a positive relation to octahedral Mg. Fluid inclusion study and mineral association show that the formation temperature of illite is $270-330^{\circ}C$. The major chemical processes leading to the formation of sericitic deposit as well as the alteration zones are the leaching of SiO2 from the country rock and the addition of Al2O3 and K2O into the sericitic ores.

  • PDF

The Electrical Characteristics of Chromium Oxide Film Produced by Son Beam Sputter Deposition (이온선 스퍼터 증착법에 의하여 제조된 CrOx의 전기적 특성)

  • 조남제;이규용
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.6
    • /
    • pp.518-523
    • /
    • 2002
  • The influences of ion beam energy and reactive oxygen partial pressure on the physical and crystallographic characteristics of transition metal oxide compound(CrOx) film were studied in this paper. Chromium oxide films were deposited onto a cover-glass using ion Beam Sputter Deposition(IBSD) technique according to the various processing parameters. Crystallinity and grain size of as-deposited films were analyzed using XRD analysis. Thickness and Resistivity of the films were measured by $\alpha$-step and 4-point probe measurement. According to the XRD, XPS and resistivity results, the deposited films were the cermet type films which had crystal structure including amorphous oxide(a-oxide) phase and metal Cr phase simultaneously. The increment of the ion beam energy during the deposition process led to decreasing of metal Cr grain size and the rapid change of resistivity above the critical $O_2$ partial pressure.

Fatigue Crack Growth Behavior of Non-Magnetic Steel with Large Grain Size (조대결정 비자성강의 피로균열진전특성)

  • 남정학;최성대;이종형;정선환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.807-810
    • /
    • 2001
  • Fatigue crack growth tests were carried out using high manganese cast steel under constant amplitude loading. Crystal grain size of the material is about 1000$\mu\textrm{m}$. For this material, the fatigue crack growth mechanism of high manganese steel was clarified from results such as observation of crack growth path and fracture surface. $\Delta$$K_{th}$ is about 8MPa$\surd$m which is quiet large as compared to the general structural steels and the crack growth rate is lower than the general structural steels especilly in the low $\Delta$K regsion. The reason of this behavior is crack closure due to fracture surface roughness.

  • PDF

A Study of Structure & Composition Characteristics of the(Ti, Al) N Coating on the STS 304 by D.C. Magnetron Sputtering (D.C. Magnetron Sputter를 이용한 (Ti, Al) N 피막의 조성 및 조직특성연구)

  • 최장현;이상래
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.5
    • /
    • pp.223-233
    • /
    • 1992
  • (Ti, Al)N films were deposited on 304 stainless steel by D.C. magnetron sputtering using Al target and Ti plate. The properties of (Ti, Al)N films such as composition, microhardness, grain size, crystal structure were investigated. The chemical composition of (Ti, Al)N films was similar to the sputter area ratio of titanium to aluminum target by means of EDS and AES survey. The higher bias voltage to substrate and the smaller input of N2 gas showedthe increased microhardness and the finer grain size of the films. The results obtained from this study show, it is belived, that the (Ti, Al)N film by D.C.magne-tron sputtering is promising in the wear resistance use.

  • PDF

Numerical analysis of steady and transient processes in a directional solidification system

  • Lin, Ting-Kang;Lin, Chung-Hao;Chen, Ching-Yao
    • Coupled systems mechanics
    • /
    • v.5 no.4
    • /
    • pp.341-353
    • /
    • 2016
  • Manufactures of multi-crystalline silicon ingots by means of the directional solidification system (DSS) is important to the solar photovoltaic (PV) cell industry. The quality of the ingots, including the grain size and morphology, is highly related to the shape of the crystal-melt interface during the crystal growth process. We performed numerical simulations to analyze the thermo-fluid field and the shape of the crystal-melt interface both for steady conditions and transient processes. The steady simulations are first validated and then applied to improve the hot zone design in the furnace. The numerical results reveal that, an additional guiding plate weakens the strength of vortex and improves the desired profile of the crystal-melt interface. Based on the steady solutions at an early stage, detailed transient processes of crystal growth can be simulated. Accuracy of the results is supported by comparing the evolutions of crystal heights with the experimental measurements. The excellent agreements demonstrate the applicability of the present numerical methods in simulating a practical and complex system of directional solidification system.

Effect of Mixed Grinding on Superconductivity YBaCu Composite Oxide

  • Ryu, Ho-Jin
    • The Korean Journal of Ceramics
    • /
    • v.2 no.4
    • /
    • pp.251-256
    • /
    • 1996
  • Effect of mixed grinding with a planetary ball mill of starting materials before heat treatment on the crystal structure and superconduction properties in the YBaCu composite oxide was studied. The size reduction of powders too place in the early stage of grinding, followed by aggregation of the resultant fine particles. The uniformity of the composition in the mixture was improved with grinding, which later decreased in the crystal grain size and well distribution of twin phase in the sintered bodies. The critical current density of the sintered bodies obtained from the mixture ground for 60 minutes showed the maximum value about 150 A/$\textrm{cm}^2$, while critical temperatures were around 90K and were independent of the grinding time.

  • PDF