• Title/Summary/Keyword: Crystal and molecular structure

Search Result 374, Processing Time 0.035 seconds

Thermal behavior of the layered structure of decanesulfonate intercalated into the hydrated nickel compound (데칸술폰이 삽입된 니켈 화합물의 층상 구조의 열적 성질)

  • 허영덕;전태현;박용준
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.6
    • /
    • pp.580-584
    • /
    • 1999
  • The synthesis and characterization of intercalated compound of decansulfonate into hydrated nickel is presented. The compound shows a layered structure as determined by high temperature powder X-ray diffraction (HTXRD). The layer distance of the product is increased from 24.7 $\AA$ to 30.5 $\AA$ by increasing the temperature which is in turn accomplished by changing the structure of the intercalated nickel compound. From the X-ray diffraction data and the decanesulfonate size, the orientation of the decanesulfonate onto the nickel layer is determined. The molecular axis of the decanesulfonate with bilayer structure is tilted to the perpendicular of the nickel layer.

  • PDF

The Crystal and Molecular Structure of Sulfapyridine

  • Koo, Chung-Hoe;Lee, Young-Ja
    • Archives of Pharmacal Research
    • /
    • v.2 no.2
    • /
    • pp.99-110
    • /
    • 1979
  • The crystal structure of sulfapyridine, $C_{11}H_{11}N_{3}O_{2}S$, has been determined by X-ray diffraction method. The compound crystallizees in the monoclinic space group C2/c with a = 12, 80(4), b= 11.72(4), $c= 15.36(5){\AA}, {\beta}= 94(3)^{\circ}$and Z = 8. A total of 1133 observed reflections were collected by the Weissenberg method with CuKaradiation. Structure was solved by the heavy atom method and refined by isostropic block-diagonal least-squares method to the R value of 0.14. The nitrogen in the pyridine ring of sulfapyridine is associated with an extra-annular hydrogen. The C (benzene ring) S-N-C (pyridine ring) group adopts the gauche form with a fonformational angle of $71^{\circ}$. The benzene ring are inclined at angle of $84^{\circ}.to the pyridine ring plane. Sulfapyridine shows three different hydrogen bonding in the crystal. They are two N-H...O hydrogen bonds with the distance of 2.90 and 2.98${\AA}$ respectively, and on N-H...N with the distance of 3.06 ${\AA}$.

  • PDF

Quantitative Structure-Activity Relationships and Molecular Docking Studies of P56 LCK Inhibitors

  • Bharatham, Nagakumar;Bharatham, Kavitha;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.266-272
    • /
    • 2006
  • Three-dimensional quantitative structure-activity relationship (3D-QSAR) models were developed for 67 molecules of 2-amino-benzothiazole-6-anilide derivatives against lymphocyte-specific protein tyrosine kinase (P56 LCK). The molecular field analysis (MFA) and receptor surface analysis (RSA) were employed for QSAR studies and the predictive ability of the model was validated by 15 test set molecules. Structure-based investigations using molecular docking simulation were performed with the crystal structure of P56 LCK. Good correlation between predicted fitness scores versus observed activities was demonstrated. The results suggested that the nature of substitutions at the 2-amino and 6-anilide positions were crucial in enhancing the activity, thereby providing new guidelines for the design of novel P56 LCK inhibitors.

The 3-[3α(2α-Hydroxy)pinane]-4,5-(pinan)-1,3-oxazolidine Synthesis, Structure and Properties

  • Bialek, Magdalena;Trzesowska, Agata;Kruszynski, Rafal
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.89-94
    • /
    • 2007
  • The new pinane derivative containing unique multifused ring system was synthesized. The crystal, molecular and electronic structure of the title compound has been determined. Both pinane ring systems have the same conformation. The five-membered oxazolidine ring exists in twisted chair conformation. The structure is expanded through O-H…O hydrogen bond to semiinfinite hydrogen-bonded chain. The bond lengths and angles in the optimised structure are similar to the experimental ones. The CH3 and CH2 groups (except this of oxazolidine ring) are negatively charged whereas the CH groups are positively charged. The largest negative potential is on the oxygen atoms. The C-N natural bond orbitals are polarised towards the nitrogen atom (ca. 61% at N) whereas the C-O bond orbitals are polarised towards the oxygen atom (ca. 67% at O). It is consistent with the charges on the nitrogen and oxygen atom of oxazolidine ring and the direction of the dipole moment vector (3.08 Debye).

Structural and Biochemical Characterization of the Two Drosophila Low Molecular Weight-Protein Tyrosine Phosphatases DARP and Primo-1

  • Lee, Hye Seon;Mo, Yeajin;Shin, Ho-Chul;Kim, Seung Jun;Ku, Bonsu
    • Molecules and Cells
    • /
    • v.43 no.12
    • /
    • pp.1035-1045
    • /
    • 2020
  • The Drosophila genome contains four low molecular weight-protein tyrosine phosphatase (LMW-PTP) members: Primo-1, Primo-2, CG14297, and CG31469. The lack of intensive biochemical analysis has limited our understanding of these proteins. Primo-1 and CG31469 were previously classified as pseudophosphatases, but CG31469 was also suggested to be a putative protein arginine phosphatase. Herein, we present the crystal structures of CG31469 and Primo-1, which are the first Drosophila LMW-PTP structures. Structural analysis showed that the two proteins adopt the typical LMW-PTP fold and have a canonically arranged P-loop. Intriguingly, while Primo-1 is presumed to be a canonical LMW-PTP, CG31469 is unique as it contains a threonine residue at the fifth position of the P-loop motif instead of highly conserved isoleucine and a characteristically narrow active site pocket, which should facilitate the accommodation of phosphoarginine. Subsequent biochemical analysis revealed that Primo-1 and CG31469 are enzymatically active on phosphotyrosine and phosphoarginine, respectively, refuting their classification as pseudophosphatases. Collectively, we provide structural and biochemical data on two Drosophila proteins: Primo-1, the canonical LMW-PTP protein, and CG31469, the first investigated eukaryotic protein arginine phosphatase. We named CG31469 as DARP, which stands for Drosophila ARginine Phosphatase.

Time-Resolved Infrared Spectroscopy of Molecular Reorientation During FLC Electro-Optic Switching

  • Jang, Won-Gun;Clark, Noel A.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1112-1117
    • /
    • 2003
  • Polarized Fourier transform infrared (IR) absorption is used to probe molecular conformation in a ferroelectric liquid crystal (FLC) during the reorientation induced by the external field. Spectra of planar aligned cells of FLC W314 are measured as functions of IR polarizer orientation and electric field applied to the FLC. The time evolution of the dichroism of the absorbance due to biphenyl core and alkyl tail molecular vibration modes, is observed. Static IR dichroism experiments show a W314 dichroism structure in which the principal axis of dielectric tensor from molecular core vibration are tilted further from the smectic layer normal than those of the tail. This structure indicates the effective binding site in which the molecules are confined in the Sm-C phase has, on average, "zig-zag" shape and this zig-zag binding site structure is rigidly maintained while the molecular axis rotates about the layer normal during field-induced switching.

  • PDF

Synthesis and Crystal Structure of a New Pentanary Thiophosphate, K0.5Ag0.5Nb2PS10

  • Dong, Yong-Kwan;Kim, Sang-Rok;Yun, Ho-Seop;Lim, Han-Jo
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.2
    • /
    • pp.309-311
    • /
    • 2005
  • Single crystals of the new pentanary thiophosphate, $K_{0.5}Ag_{0.5}Nb_2PS_{10}$ has been prepared through reactions of the elements with halide fluxes. The structure of $K_{0.5}Ag_{0.5}Nb_2PS_{10}$ has been analyzed by single crystal X-ray diffraction technique. The structure of $K_{0.5}Ag_{0.5}Nb_2PS_{10}$ is made up of one-dimensional ${^{\infty}_1}[Nb_2PS_{10}]$ chains along the [001] direction and these chains are separated from one another by $Ag^+$ and disordered $K^+$ ions. This chain is basically built up from bicapped trigonal prismatic [Nb2S12] units and tetrahedral [PS4] groups. The [$Nb_2S_{12}$] units are connected together to form the linear chain, ${^{\infty}_1}[Nb_2S_9]$ by sharing the S-S prism edge. Short (2.885(2) $\AA$ or 2.888(2) $\AA$) and long (3.743(1) $\AA$) Nb-Nb distances are alternating along the chain, and the $S_2{^2-}]\;and\;S^{2-}$anionic species are observed. The distorted octahedral coordination around the $Ag^+$ ion can be described as [2+4] bonding interaction.

Synthesis and structure analysis of the bis(dicyclohexylammonium) chromate dihydrate complex, [(C6H11)2NH2]2[CrO4]·2H2O

  • Kim, Chong-Hyeak;Moon, Hyoung-Sil;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.448-451
    • /
    • 2007
  • A new bis(dicyclohexylammonium) chromate dihydrate complex, $[(C_6H_{11})_2NH_2]_2[CrO_4]{\cdot}2H_2O$, (I), has been synthesized and its structure analyzed by FT-IR, EDS, elemental analysis, ICP-AES, and single crystal X-ray diffraction methods. The Cr(VI) complex (I) is tetragonal system, I${\bar{4}}$2d space group with a = 12.5196(1), b = 12.5196(1), c = $17.3796(3){\AA}$, a = ${\beta}$ = ${\gamma}$ = $90^{\circ}$, V = $2724.09(6){\AA}^3$, Z = 4. The crystal structure of complex (I) consists of tetrahedral chromate $[CrO_4]^{2-}$ anion, two organic dicyclohexylammonium $[(C_6H_{11})_2NH_2]^+$ cations and two lattice water molecules. The chromate anion and protonated dicyclohexylammonium cation is mainly constructed through the ionic bond. The cyclohexylammonium rings of the dicyclohexylammonium cation take the chair form and vertical configuration with each other. The N-H${\cdot}$O and O-H${\cdot}$O hydrogen bond networks between the $N_{dicyclohexylammonium}$, $O_{water}$ and $O_{chromate}$ atom lead to self-assembled molecular conformation and stabilize the crystal structure.

Ab initio Studies on Acene Tetramers: Herringbone Structure

  • Park, Young-Hee;Yang, Ki-Yull;Kim, Yun-Hi;Kwon, Soon-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1358-1362
    • /
    • 2007
  • The structures, energetics and transfer integrals of the acene tetramers up to pentacene are investigated with the ab initio molecular orbital method at the level of second-order Møller-Plesset perturbation theory (MP2). Calculated geometries for the herringbone-style structures found in the crystal structure were characterized as local minima, however the geometrical discrepancy between crystal and MP2 theoretical structure is reasonably small. The binding energy of pentacene tetramer was calculated up to 40 kcal/mol (MP2/6-31G(d)) and about 90 kcal/mol (MP2/aug-cc-pVDZ), and the latter seems to be too much overestimated. The tendency of the hole transfer integrals computed with ab initio MP2/3-21G(d) geometry is well agreement with those estimated with crystal structure with some discrepancy, and the gradual increment of the transfer integrals at the crystal geometry is attributed to mainly packing structure rather than the intrinsic property of acene such as a size of acene.