• Title/Summary/Keyword: Cryptomining

Search Result 2, Processing Time 0.018 seconds

Dynamic Analysis Framework for Cryptojacking Site Detection (크립토재킹 사이트 탐지를 위한 동적 분석 프레임워크)

  • Ko, DongHyun;Jung, InHyuk;Choi, Seok-Hwan;Choi, Yoon-Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.4
    • /
    • pp.963-974
    • /
    • 2018
  • With the growing interest in cryptocurrency such as bitcoin, the blockchain technology has attracted much attention in various applications as a distributed security platform with excellent security. However, Cryptojacking, an attack that hijack other computer resources such as CPUs, has occured due to vulnerability to the Cryptomining process. In particular, browser-based Cryptojacking is considered serious because attacks can occur only by visiting a Web site without installing it on a visitor's PC. The current Cryptojacking detection system is mostly signature-based. Signature-based detection methods have problems in that they can not detect a new Cryptomining code or a modification of existing Cryptomining code. In this paper, we propose a Cryptojacking detection solution using a dynamic analysis-based that uses a headless browser to detect unknown Cryptojacking attacks. The proposed dynamic analysis-based Cryptojacking detection system can detect new Cryptojacking site that cannot be detected in existing signature-based Cryptojacking detection system and can detect it even if it is called or obfuscated by bypassing Cryptomining code.

Analysis of Trends in Detection Environments and Proposal of Detection Frame work for Malicious Cryptojacking in Cloud Environments (악성 크립토재킹 대응을 위한 탐지 환경별 동향 분석 및 클라우드 환경에서의 탐지 프레임워크 제안)

  • Jiwon Yoo;Seoyeon Kang;Sumi Lee;Seongmin Kim
    • Convergence Security Journal
    • /
    • v.24 no.2
    • /
    • pp.19-29
    • /
    • 2024
  • A crypto-jacking attack is an attack that infringes on the availability of users by stealing computing resources required for cryptocurrency mining. The target of the attack is gradually diversifying from general desktop or server environments to cloud environments. Therefore, it is essential to apply a crypto-minor detection technique suitable for various computing environments. However, since the existing detection methodologies have only been detected in a specific environment, comparative analysis has not been properly performed on the methodologies that can be applied to each environment. Therefore, in this study, classification criteria for conventional crypto-minor detection techniques are established, and a complex and integrated detection framework applicable to the cloud environment is presented through in-depth comparative analysis of existing crypto-minor detection techniques based on different experimental environments and datasets.