• Title/Summary/Keyword: Cryogenics Vessel

Search Result 27, Processing Time 0.027 seconds

Thermal Shield for Vacuum Vessel of KSTAR TOKAMAK (KSTAR Vacuum Vessel 의 열차폐막 설계)

  • 김동락;육종설;이기성
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.119-120
    • /
    • 2000
  • The thermal shield for the TF coils and PF coils has been located between the coils and vacuum vessel. The thermal shielding cryopanel is cooled under 80K by a fored flow of helium gas using cooing pipes on the cryopanel. Design of the KSTAR thermal shield of vacuum vessel is described.

  • PDF

Design of Termination Cryostat for HTS Power Cable (고온초전도 케이블 단말용 cryostat 설계)

  • 양형석;김승현;김동락;조승연;김도형;류희석;성기철
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.160-162
    • /
    • 2003
  • Termination cryostat for 22.9kV, 1.26kA-class HTS power cable has been designed. The cryostat consists of vacuum vessel, liquid nitrogen vessel, current lead and HTS power cable. The current lead and the HTS power cable are connected in liquid nitrogen vessel cooled by forced-circulation subcooled liquid nitrogen. The maximum total heat load of this cryostat is expected to be 150w. In this paper, the detailed design of the termination cryostat is mentioned.

  • PDF

A new method fast measure cryogenic vessel heat leakage

  • LI, Zheng-Qing;LI, Xiao-Jin;LIU, Mo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.1
    • /
    • pp.24-28
    • /
    • 2020
  • Heat leakage is an important parameter to reflect heat insulated performance of cryogenic vessel. According to the current standard requirements, it needs to measure the daily evaporation rate to indicate heat leakage. The test needs-over 24h after cryogenic vessel in heat equilibrium as standard required, therefore test efficiency is poor and new efficient method is required to cut test time. First of all, the volume of instantaneous evaporated gas and heat leakage are calculated by the current standard corresponding to the maximum allowable daily evaporation rate of cryogenic vessel. Depending on the relationship between real daily evaporation rate and maximum allowable daily evaporation rate of cryogenic vessel, we designed a new test method based on the pressure changes over time in cryogenic vessel to determine whether its heat insulated performance meets requirements or not. Secondly, the heat transfer process was analyzed in measurement of cryogenic vessel, and the heat transfer equations of whole system were established. Finally, the test was completed in four hours; meanwhile the heat leakage and daily evaporation rate of cryogenic vessel are calculated basing on test data.

A Structural Analysis of the KSTAR Cryostat (KSTAR 저온진공용기 구조해석)

  • 허남일;김형섭;조승연;임기학;KSTAR설계팀
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.185-188
    • /
    • 1999
  • KSTAR cryostat is a large vacuum vessel that provides the necessary thermal barrier between the ambient temperature test cell and the liquid helium cooled magnets. In this work, the structural analyses for the cryostat under the normal operation condition were performed. As a result, it turns out that the vessel would be safe when it is exposed to normal operation loads, such as system weight, vacuum pressure, and plasma vertical disruption load. And, the preliminary result on the modal analysis is presented.

  • PDF

Experimental investigation of the Rotating Cryogenic System (회전하는 극저온 시스템의 단열 특성에 관한 실험적 연구)

  • 이창규;정상권
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.63-66
    • /
    • 2000
  • A rotating cryogenic system was designed similar to the cooling system for the rotor of a superconducting generator. The experimental rotor has an inner vessel which simulates the winding space of an actual superconducting rotor, and a torque tube of comparable design. This paper describes the evaluation of the total heat leak into the inner vessel that leads to the study of the jheat transfer characteristic of the rotating cryogenic system.

  • PDF

Neon liquefaction system manufacture and characteristic that use GM refrigerator (GM 냉동기를 이용한 네온액화시스템 제작과 특성)

  • 권운식;손명환;백승규;이언용;권영길;서정세;문태선;조창호
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.278-280
    • /
    • 2003
  • We manufactured neon liquefaction system for cooling system of HTS motor. The neon liquefaction system consists of a GM refrigerator, a liquefaction vessel and a vacuum chamber. It is found that the neon starts to be liquefied in the liquefaction vessel after 35 minutes of cool-down from gas state of 294k. Capacity of neon liquefaction system and the liquefaction rate were about 36W, 0.1g/s.

  • PDF

Experimental of the Rotaing Cryogenic System (회전하는 극저온 시스템의 단열 특성에 관한 실험적 연구)

  • 이창규;정상권
    • Progress in Superconductivity and Cryogenics
    • /
    • v.2 no.1
    • /
    • pp.7-13
    • /
    • 2000
  • A rotating cryogenic system was designed similar to the cooling system for the rotor of a superconducting generator. The experimental rotor has an inner vessel which simulates the winding space of an actual superconducting rotor, and a torque tube of comparable design. This paper describes the evaluation of the total heat leak into the inner vessel that leads to the study of the heat transfer characteristic of the rotating cryogenic system. To examine the insulation performance of the experimental rotor. temperature was measured at each part of the system at various rotaing speeds from 0 rpm to 600 rpm. Total heat leak into the inner vessel was calculated by measuring the boil-off rate of liquid helium. Conduction heat leak to the inner vessel was obtained by the vent tube, and radiation heat leak was calculated by subtracting the conduction heat lent from the total heat leak. There seemed to be no rotaional dependency of total heat leak at least up 600 rpm.

  • PDF

Commissioning result of the KSTAR in-vessel cryo-pump

  • Chang, Y.B.;Lee, H.J.;Park, Y.M.;Lee, Y.J.;Kwag, S.W.;Song, N.H.;Park, D.S.;Joo, J.J.;Moon, K.M.;Kim, N.W.;Yang, H.L.;Oh, Y.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.53-58
    • /
    • 2013
  • KSTAR in-vessel cryo-pump has been installed in the vacuum vessel top and bottom side with up-down symmetry for the better plasma density control in the D-shape H-mode. The cryogenic helium lines of the in-vessel cryo-pump are located at the vertical positions from the vacuum vessel torus center 2,000 mm. The inductive electrical potential has been optimized to reduce risk of electrical breakdown during plasma disruption. In-vessel cryo-pump consists of three parts of coaxial circular shape components; cryo-panel, thermal shield and particle shield. The cryo-panel is cooled down to below 4.5 K. The cryo-panel and thermal shields were made by Inconel 625 tube for higher mechanical strength. The thermal shields and their cooling tubes were annealed in air environment to improve the thermal radiation emissivity on the surface. Surface of cryo-panel was electro-polished to minimize the thermal radiation heat load. The in-vessel cryo-pump was pre-assembled on a test bed in 180 degree segment base. The leak test was carried out after the thermal shock between room temperature to $LN_2$ one before installing them into vacuum vessel. Two segments were welded together in the vacuum vessel and final leak test was performed after the thermal shock. Commissioning of the in-vessel cryo-pump was carried out using a temporary liquid helium supply system.

Design Considerations of HTS Synchronous Motor arranged with Magnetic Core inside of Magnet Vessel (회전자 내부에 철심을 배치한 고온초전도모터 설계 방안)

  • 백승규;김석환;손명환;서무교;조영식;권영길;류강식
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.215-218
    • /
    • 2002
  • HTS motors and generators have some advantages over LTS machines because of higher operating temperature. Very low temperature nakes LTS machines need higher refrigeration cost and large facilities. However, HTS machines are expected to be comparable with conventional counterparts at smaller machine ratings than LTS generators in terms of efficiency and size. As the operating temperature increases, the magnetic flux density generated by HTS field coils decreases relatively. For example, 1000hp HTS synchronous motor developed in a few years ago has maximum field density of 1.5T. At this point, magnetic material used in conventional machines is able to pass magnetic flux easily with high permeability. In order to investigate the effect, we arranged magnetic core only inside of magnet vessel of a 100hp target machine. By way of FEM analysis, we concluded that the magnetic core can reduce amount of expensive BSCCO conductor so much.

  • PDF