• Title/Summary/Keyword: Cryogenic turbopump test facility

Search Result 10, Processing Time 0.04 seconds

Development of Cryogenic Turbopump Test Facility (극저온 터보펌프 성능시험설비의 개발)

  • Kang, Jeong-Seek;Kim, Jin-Sun;Kim, Jin-Han
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.340-345
    • /
    • 2003
  • Cryogenic turbopump test facility(CTTF) is designed and developed. Hydraulic and cavitation performance of turbopump in cryogenic environment can be measured. Working fluid is liquid nitrogen and operating temperature is $-197^{\circ}C$. Liquid nitrogen run tank, catch tank and pressurizing tank has been built and remote tank pressure control system are installed. Maximum power of turbopump is 320kW and its maximum speed is 32000rpm. Cryogenic fluids and lubricating systems are effectively separated that long test times are acquired. Therefore hydraulic and cavitation performance can be measured accurately and effectively. This facility will contribute greatly to the development of turbopump for KSLV.

  • PDF

Hydraulic Performance Test of a Turbopump Inducer in Liquid Nitrogen (액체질소를 이용한 터보펌프 인듀서의 수력성능시험)

  • Kim, Jin-Sun;Hong, Soon-Sam;Kim, Jin-Han
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.348-353
    • /
    • 2005
  • A cryogenic test facility has been developed to perform inducer and pump tests using liquid nitrogen. Performance tests of a turbopump in the maximum 50ton-thrust class can be performed with cryogenic fluid in the facility which operates at a temperature around $-196^{\circ}C$ with the rotational speed up to 30,000rpm. To verify the reliability of the cryogenic pump test facility, hydraulic performance tests of an inducer were accomplished, and their results were compared with the result from a water test The results confirm the reliability of the cryogenic test facility, and it is expected to contribute for on-going development of a turbopump for liquid rocket engines.

  • PDF

Hydraulic Performance Test of a Turbopump Inducer using Liquid Nitrogen (액체질소를 이용한 터보펌프 인듀서의 수력성능시험)

  • Kim Jin-Sun;Hong Soon-Sam;Kim Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.4 s.37
    • /
    • pp.20-26
    • /
    • 2006
  • A cryogenic test facility has been developed to perform inducer and pump tests using liquid nitrogen. Performance tests of a turbopump in the maximum 50ton-thrust class can be performed with cryogenic fluid in the facility which operates at a temperature around -196oC with the rotational speed up to 30,000rpm To verify the reliability of the cryogenic pump test facility, hydraulic performance tests of an inducer were accomplished, and their results were compared with the result from a water test. The results confirm the reliability of the cryogenic test facility, and it is expected to contribute for on-going development of a turbopump for liquid rocket engines.

Cryogenic Bearing and Seal Test Facility for a Turbopump (터보펌프용 극저을 베어링/실 성능시험설비)

  • Kwak, Hyun-D.;Jeon, Seong-Min;Kim, Jin-Han
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.341-347
    • /
    • 2005
  • To perform a cryogenic development test for Tribo-elements in a turbopump, a cryogenic bearing and seal test facility (BSTF) is designed and currently under construction in KARI. The working fluid is liquid nitrogen operating at a temperature $-197^{\circ}C$. The maximum operating pressure and volume flow rate of BSTF are 100 bar and 10 liters per second, respectively. The development tests of floating ring seals, inter-propellant seals (IPS) and cryogenic ball bearings in a turbopump will be performed using the BSTF. This paper briefly described design requirements and procedures of BSTF.

  • PDF

Development of Cryogenic Bearing&Seal&Material Test Facility for High Pressure Turbopump (고압터보펌프용 극저온 베어링&실&재료 시험 설비 개발)

  • Yang, Hong-Jun;Kim, Seon-Yong;Chin, Hyung-Seok;Woo, Kwan-Je
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.347-351
    • /
    • 2004
  • The cryogenic test facility is developed for test of deep groove ball bearings, floating ring seals, materials (steel & copper) for High Pressure Turbopump of liquid rocket engine (LRE). The cryogenic bearing test is performed to evaluate the flow rate of cooling water and the load-carrying capacity of bearings. The cryogenic seal test is performed to evaluate the determination of magnitude of leakages through the seal, a time variation of this magnitude. The test of the materials Pair is performed to evaluate its fitness for operation in the liquid oxygen medium.

  • PDF

Cryogenic Performance Test of LOX Turbopump in Liquid Nitrogen (액체질소를 이용한 산화제펌프의 극저온 성능시험)

  • Kim, Jin-Sun;Hong, Soon-Sam;Kim, Dae-Jin;Choi, Chang-Ho;Kim, Jin-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.391-397
    • /
    • 2010
  • Performance tests of a liquid-oxygen pump were carried out using liquid nitrogen (LN2) as a working fluid in a cryogenic turbopump test facility in Korea Aerospace Research Institute (KARI). The tests were performed at 30-55% of the design rotational speed, and the results were compared with those from a water test. The experimental results confirmed the similarity of the hydraulic performance, which allows the prediction of the pump performance at a design rotational speed of 20,000 rpm. The overall cavitation performance of the pump in the cryogenic environment was better than that in the water environment for all ranges of flow rates and rotational speeds. Critical cavitation number at the design flow rate was determined as 0.012 from the cryogenic test, and as 0.024 from the water test. The improved cavitation performance is due to the thermodynamic effect in cryogenic fluids.

Development of Cryogenic Pump Test Facility (극저온 펌프 성능시험설비의 개발)

  • Kang, Jeong-Seek;Kim, Jin-Sun;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.4 s.25
    • /
    • pp.47-52
    • /
    • 2004
  • Cryogenic pump test facility (CPTF) is designed and developed in KARI. Hydraulic and cavitation performance of pump and inducer in cryogenic environment can be measured. Working fluid is liquid nitrogen and operating temperature is $-197^{\circ}C$. Run tank, catch tank of liquid nitrogen and their pressurizing tank has been built and remote tank pressure control system are installed. Maximum power of driving motor is 320 kW and its maximum speed is 32000rpm. Cryogenic fluids and lubricating systems are effectively separated that long test times are acquired. Therefore hydraulic and cavitation performance can be measured accurately and effectively. Pre-cooling test of the facility was successfully accomplished. This facility will contribute greatly to the development of turbopump for KSLV.

Cryogenic Performance Test of a Turbopump Inducer (터보펌프 인듀서에 대한 극저온 성능시험)

  • Kim, Jin-Sun;Kim, Jin-Han;Hong, Soon-Sam
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.1
    • /
    • pp.64-70
    • /
    • 2007
  • A test facility was developed where an inducer for a liquid rocket engine turbopump can be tested using liquid nitrogen as a working fluid. At the facility, a hydrodynamic performance test and a cavitation performance test for an oxidizer turbopump were carried out. Head-flow relation at liquid nitrogen test was similar to the case at water test. However, cavitation performance at the liquid nitrogen was superior to the case at water test, which results from the thermodynamic effect of cavitation.

Cryogenic Performance Test of a Turbopump Inducer (터보펌프 인듀서에 대한 극저온 성능시험)

  • Hong Soon-Sam;Kim Jin-Sun;Kim Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.93-99
    • /
    • 2006
  • A test facility was developed where an inducer for a liquid rocket engine turbopump can be tested using liquid nitrogen as a working fluid. At the facility, a hydrodynamic performance test and a cavitation performance test for an oxidizer turbopump were carried out. Head-flow relation at liquid nitrogen test was similar to the case at water test. However, cavitation performance at the liquid nitrogen was superior to the case at water test, which results from the thermodynamic effect of cavitation.

  • PDF

Development of the Low Pressure Piping System for the Liquid Rocket LOX Feed System (액체로켓 LOX 공급계의 저압 배관시스템 개발)

  • Jun, Sang-In;Jung, Jin-Taeg;Kim, Woo-Kyum;Park, Joon-Seong;Kwon, Oh-Sung;Kim, Young-Mog
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.322-325
    • /
    • 2007
  • This paper shows the development procedure of the low pressure LOX feed system which is used in the liquid rocket with a turbopump. Korean Air has cooperated with KARI in developing the LOX feed system to turbopump. The LOX feed system is characterized with cryogenic temperature and the thin-thickness tube for weight saving. The system in this project is composed with a main feed line and a recirculation line for the LOX temperature conditioning. Each piping system has many components, namely, bellows, filter, orifice, valves, flange and support. In this paper, system design & manufacturing, structural & thermal analyses, and component tests are explained. Finally, the system was assembled to the KARI's PTF test facility and functioned well to meet its required performance.

  • PDF