• 제목/요약/키워드: Cryogenic fluids

검색결과 43건 처리시간 0.022초

극저온 가스와 MQL(minimum quantity lubrication)의 복합 분사를 위한 하이브리드 노즐 설계에 관한 전산유체역학 해석 (Analysis of computational fluid dynamics on design of nozzle for integrated cryogenic gas and MQL(minimum quantity lubrication))

  • 송기혁;신봉철;윤길상;하석재
    • Design & Manufacturing
    • /
    • 제13권3호
    • /
    • pp.41-47
    • /
    • 2019
  • In conventional machining, the use of cutting fluid is essential to reduce cutting heat and to improve machining quality. However, to increase the performance of cutting fluids, various chemical components have been added. However, these chemical components during machining have a negative impact on the health of workers and cutting environment. In current machining, environment-friendly machining is conducted using MQL (minimum quantity lubrication) or cryogenic air spraying to minimize the harmful effects. In this study, the injection nozzle that can combined injecting minimum quantity lubrication(MQL) and cryogenic gas was designed and the shape optimization was performed by using computational fluid dynamics(CFD) and design of experiment(DOE). Performance verification was performed for the designed nozzle. The diameter of the sprayed fluid at a distance of 30 mm from the nozzle was analyzed to be 21 mm. It was also analyzed to lower the aerosol temperature to about 260~270K.

다단 성형 공정 시 고-Mn 강의 타원형 용기 헤드에서의 변형률 분포: 유한요소해석 (Strain Evolution in High-Mn Steel Ellipsoidal Vessel Head during Multi-forming Process: A Finite Element Analysis)

  • ;;최시훈
    • 소성∙가공
    • /
    • 제32권5호
    • /
    • pp.268-275
    • /
    • 2023
  • ISO 21029 cryogenic vessel is used to transport cryogenic fluids. High-manganese steel (High-Mn steel) is widely regarded as suitable for use at cryogenic temperatures. The conventional way of manufacturing an ellipsoidal vessel head involves incremental stretching, followed by a spinning process. In this study, an alternative method for forming an ellipsoidal vessel head was proposed. Finite element analysis (FEA) was used to theoretically examine the strain evolution during a multi-stage forming process, which involved progressive stretching, deep drawing, and spinning of High-Mn steel. The distribution of effective strain and strain components were analyzed at different regions of the formed part. The FEA results revealed that only normal strains were evident in the dished region of the vessel head due to the stretching process. However, the flange region experienced complex strain evolution during the subsequent deep drawing and spinning process.

극저온액체 저장용기에서 열전도 차폐단의 영향 (Effect of Vapor-Cooled Heat Stations in a Cryogenic Vessel)

  • 김서영;강병하;최항집
    • 한국수소및신에너지학회논문집
    • /
    • 제9권4호
    • /
    • pp.169-176
    • /
    • 1998
  • Ni/MH 2차전지의 음극용 금속간화합물전극의 부식특성에 미치는 합금원소와 결합제의 영향을 조사하였다. 전극의 재료는 $(LM)Ni_{4.49}Co_{0.1}Mn_{0.205}Al_{0.205}$$(LM)Ni_{3.6}Co_{0.7}Mn_{0.3}Al_{0.4}$$AB_5$ type합금을 모재로 하였다. 여기에 Si sealant 또는 PTFE를 결합제로 첨가한 것과 원재료 분말에 구리를 20% 무전해도금한 것을 냉간 압착하여 전극을 제조하였다. 부식특성을 조사하기위해 탈공기된 6M의 KOH 용액에서 동전위법과 순환전위법을 이용하여 부식전류와 전류밀도를 측정하였다. 모재에 Co가 많이 함유되면 전극의 내식성을 향상시키고 Ni이 많이 함유되면 충전과 방전을 반복하는 동안에 전극의 안정성을 저하시켰다. 부식전류밀도는 Si sealant를 결합제로 사용한 전극의 경우가 PTFE를 사용한 전극의 경우보다 낮았고 Cu가 도금된 전극은 내식성에서 가장 우수하게 나타났다.

  • PDF

극저온 유체 유출현상에 관한 연구 (Experiemtnal Tests of Cryogenic Liuid Spill on a Plate)

  • 류용희;황윤지;이윤한;김광석;이재훈;심희준
    • 플랜트 저널
    • /
    • 제16권3호
    • /
    • pp.42-46
    • /
    • 2020
  • FLNG 혹은 FSRU와 같이 대량의 LNG를 처리하는 공정에서의 LNG 누출 사고 시, 강재의 급격한 온도변화는 구조물의 취성파괴를 야기시킬 가능성이 있다. 본 논문에서는 극저온 유출 실험을 통해 극저온 유체가 강판에 형성되는 원리 및 과정을 알아보고, 노즐로부터의 거리 및 노출시간에 따른 강판의 온도변화의 상관관계를 분석하고자 한다. 극저온 유체는 LN2(비점 -192℃) 및 LNG(비점 -162℃) 두 가지 종류를 사용하였으며, 유출량은 LN2의 경우 1.6L/min 및 LNG 1.5L/min로 강판의 상부에서 분사하였다. 강재는 DH계열 이용하였으며, 총 10 지점에서 온도를 측정하였다. 실험 결과 극저온 유출 초기 강재표면에서 Leidenfrost 효과가 관찰 되었으며, 극저온 유체가 흐르는 경로 및 유체의 증발열에 차이에 따라 강재의 온도분포가 다르게 나타나는 것을 발견하였다.

Effectiveness analysis of pre-cooling methods on hydrogen liquefaction process

  • Yang, Yejun;Park, Taejin;Kwon, Dohoon;Jin, Lingxue;Jeong, Sangkwon
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제22권3호
    • /
    • pp.20-24
    • /
    • 2020
  • The purpose of this analytic study is to design and examine an efficient hydrogen liquefaction cycle by using a pre-cooler. The liquefaction cycle is primarily comprised of a pre-cooler and a refrigerator. The fed hydrogen gas is cooled down from ambient temperature (300 K) to the pre-cooling coolant temperature (either 77 K or 120 K approximately) through the pre-cooler. There are two pre-cooling methods: a single pre-coolant pre-cooler and a cascade pre-cooler which uses two levels of pre-coolants. After heat exchanging with the pre-cooler, the hydrogen gas is further cooled and finally liquefied through the refrigerator. The working fluids of the potential pre-cooling cycle are selected as liquid nitrogen and liquefied natural gas. A commercial software Aspen HYSYS is utilized to perform the numerical simulation of the proposed liquefaction cycle. Efficiency is compared with respect to the various conditions of the heat exchanging part of the pre-cooler. The analysis results show that the cascade method is more efficient, and the heat exchanging part of the pre-coolers should have specific UA ratios to maximize both spatial and energy efficiencies. This paper presents the quantitative performance of the pre-cooler in the hydrogen liquefaction cycle in detail, which shall be useful for designing an energy-efficient liquefaction system.

Teflon seal을 이용한 bayonet형 진공단열배관 (Bayonet type vacuum insulated pipes with Teflon seal)

  • 이현철;강형석
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 1999년도 제1회 학술대회논문집(KIASC 1st conference 99)
    • /
    • pp.173-176
    • /
    • 1999
  • Vacuum insulated pipes (VIP) are one of the important equipments for cryogenic fluids' transfer. Flange type of VIP, which can easily be installed at the site, uses a set of male and female bayonet with very small gap between them. In order to prevent leakage of liquid from inner pipe to bayonet. Teflon or Kel-F is located outside both the inner pipe of male and the guide of female. Even though liquid may leak at room temperature, it cannot leak at cryogenic temperature since Teflon shrinks much more than pipes and adheres closely to the inner pipe and guide. Teflon seal method has the advantage of easy fabrication, low cost and effective sealing compared to the conventional method.

  • PDF

Development of the closed-loop Joule-Thomson cryoablation device for long area cooling

  • Lee, Cheonkyu;Park, Inmyong;Yoo, Donggyu;Jeong, Sangkwon;Park, Sang Woo
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권3호
    • /
    • pp.40-48
    • /
    • 2013
  • Cryoablation device is a surgical instrument to produce the cooling effect to destroy detrimental biological tissue by utilizing low temperature around 110 K. Usually, this device has the concentrated cooling region, so that it is suitable for concentrated and thick target. Accordingly, it is hard to apply this device for the target which is distributed and thin target. In this study, the design procedure of a closed-loop cryoablation device with multiple J-T expansion part is developed for the treatment of incompetent of great saphenous vein. The developed cyoablation device is designed with the analysis of 1-dimensional (1-D) bio-heat equation. The energy balance is considered to determine the minimum mass flow rate of refrigerant for consecutive flow boiling to develop the uniform cooling temperature. Azeotropic mixed refrigerant R410A and zeotropic mixed refrigerant (MR) of R22 ($CHClF_2$) and R23 ($CHF_3$) are utilized as operating fluids of the developed cryoablation device to form the sufficient temperature and to verify the quality of the inside of cryoablation probe. The experimental results of R410A and the zeotropic MR show the temperature non-uniformity over the range are $244.8K{\pm}2.7K$ and $239.8K{\pm}4.7K$ respectively. The experimental results demonstrate that the probe experiences the consecutive flow boiling over the target range of 200 mm.

액체로켓추진시스템의 가압제 탱크에서 가압제 토출시 온도강하율에 대한 연구 (I) (Investigation on Temperature Drop during Pressurant Discharging from Pressurant Tank of Liquid Rocket Propulsion System (I))

  • 정용갑;권오성;조남경;한상엽;조인현
    • 한국추진공학회지
    • /
    • 제11권2호
    • /
    • pp.54-61
    • /
    • 2007
  • 액체로켓추진시스템에서 추진제 가압시스템은 추진제가 저장되어 있는 탱크의 얼리지 공간에 가압제인 가스를 제어된 압력으로 공급하는 것이다. 이러한 추진제 가압시스템의 가장 중요한 설계변수는 가압제를 저장하고 있는 탱크에서 토출되는 가압제의 온도이며, 기체상태인 가압제의 밀도는 토출되는 가압제의 온도에 따라 민감하게 변한다. 일반적으로 고추력을 요구하는 극저온 추진제가 적용되는 추진기관에서는 가압제를 고밀도 고압으로 저장하여 가압제 탱크의 무게를 줄이기 위하여 가압제 저장탱크를 극저온 추진제 탱크 내부에 설치하는 극저온 저장 가압시스템을 사용한다. 본 연구에서는 가압제가 가압제 저장탱크에서 토출 될 때 강하되는 온도 변화를 실험 및 해석을 통하여 고찰하였다. 본 연구에 적용된 유체는 외부유체로 공기와 액체산소 그리고 가압제로 $GN_2$와 GHe를 각각 사용하였다.

소형위성 발사체용 추진제 가압 열교환기 설계 해석 (Heat Exchanger Design Analysis for Propellant Pressurizing System of Satellite Launch Vehicles)

  • 이희준;한상엽;정용갑;조남경;길경섭;김영목
    • 한국전산유체공학회지
    • /
    • 제9권3호
    • /
    • pp.49-56
    • /
    • 2004
  • A heated and expanded helium is used to pressurize liquid propellants in propellant tanks of propulsion system of liquid propellant launch vehicles. To produce a heated and expanded helium, an hot-gas heat exchanger is used by utilizing heat source from an exhausted gas, which was generated in a gas generator to operate turbine of turbo-pump and dumped out through an exhaust duct of engine. Both experimental and numerical approaches of hot-gas heat exchanger design were conducted in the present study. Experimentally, siliconites - electrical resistance types - were used to simulate the full heat condition instead of an exhausted gas. Cryogenic heat exchangers, which were immersed in a liquid nitrogen pool, were used to feed cryogenic gaseous helium in a hot-gas heat exchanger. Numerical simulation was made using commercially utilized solver - Fluent V.6.0 - to validate experimental results. Helically coiled stainless steel pipe and stainless steel exhausted duct were consisted of tetrahedron unstructured mesh. Helium was a working fluid Inside helical heat coil and regarded as an ideal gas. Realizable k-』 turbulent modeling was adopted to take turbulent mixing effects in consideration. Comparisons between experimental results and numerical solutions are Presented. It is observed that a resulted hot-gas heat exchanger design is reliable based on the comparison of both results.

극저온 액체수소 저장탱크 지지시스템의 열응력 해석 (Thermal Stress Analysis of the Support System in Cryogenic Liquid Hydrogen Storage Tank)

  • 박동훈;윤상국;이정환;조원일;백영순
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.239-245
    • /
    • 2005
  • The reduction of heat transfer rate to the stored liquid hydrogen from outside condition is extremely important to keep the liquid hydrogen longer. In this paper the highly efficient support system for the liquid hydrogen storage vessel was newly developed and analysed. The support system was composed of a spherical ball in the center of supporter to reduce the heat transfer area, with its above and below supporting blocks which are the SUS and PTFE blocks inserted in the SUS tube. The heat transfer rate and temperature distribution of the support system were evaluated by FLUENT, and the thermal stress and strain were estimated by ANSYS software. The results showed that the heat transfer rate from outer vessel to inner one was extremely decreased compared with the common method which is simply SUS tubes inserted between inner and outer tanks. The thermal stress and strain were obtained well below the limited values. As a result, it was the most efficient support system of storage vessel for liquid hydrogen and most cryogenic fluids.

  • PDF