• Title/Summary/Keyword: Cryogenic Process

Search Result 240, Processing Time 0.03 seconds

Pressure-volume-temperature gauging method experiment using liquid nitrogen under microgravity condition of parabolic flight

  • Seo, Mansu;Park, Hana;Yoo, DonGyu;Jung, Youngsuk;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.2
    • /
    • pp.64-69
    • /
    • 2014
  • Measuring an exact amount of remaining cryogenic liquid propellant under microgravity condition is one of the important issues of rocket vehicle. A Pressure-Volume-Temperature (PVT) gauging method is attractive due to its minimal additional hardware and simple gauging process. In this paper, PVT gauging method using liquid nitrogen is investigated under microgravity condition with parabolic flight. A 9.2 litre metal cryogenic liquid storage tank containing approximately 30% of liquid nitrogen is pressurized by ambient temperature helium gas. During microgravity condition, the inside of the liquid tank becomes near-isothermal condition within 1 K difference indicated by 6 silicon diode sensors vertically distributed in the middle of the liquid tank. Helium injection with higher mass flow rate after 10 seconds of the waiting time results in successful measurements of helium partial pressure in the tank. Average liquid volume measurement error is within 11% of the whole liquid tank volume and standard deviation of errors is 11.9. As a result, the applicability of PVT gauging method to liquid propellant stored in space is proven with good measurement accuracy.

Method applied to evaluate heat leakage of cryogenic vessel for liquid hydrogen

  • Li, Zhengqing;Yang, Shengsheng;Wang, Xiaojun;Yuan, Yafei
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.1
    • /
    • pp.7-11
    • /
    • 2021
  • Cryogenic vessels are special equipment that requires periodic evaluation of their thermal insulation performance. At the current standard, the test is considered as the loss product or heat leakage of cryogenic vessel, which takes over 72 h to evaluate; consequently, a large amount of working medium is discharged to the environment in the process. However, hydrogen is flammable and explosive, and the discharged gas may be dangerous. If liquid hydrogen is replaced with liquid nitrogen before testing, the operation then becomes complicated, and the loss product or heat leakage cannot respond to the thermal insulation performance of cryogenic vessels for liquid hydrogen. Therefore, a novel method is proposed to evaluate the heat leakage of cryogenic vessels for liquid hydrogen in self-pressurization. In contrast to the current testing methods, the method proposed in this study does not require discharge or exchange of working medium in all test processes. The proposed method is based on one-dimensional heat transfer analysis of cryogenic vessels, which is verified by experiment. When this method is used to predict the heat leakage, the comparison with the experimental data of the standard method shows that the maximum error of heat leakage is less than 5.0%.

A Study of Chill-down Process in 30 tonf Turbopump-Gas Generator Coupled Tests (30톤급 터보펌프-가스발생기 연계시험에서 예냉 절차 연구)

  • Moon, Yoon-Wan;Nam, Chang-Ho;Kim, Seung-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.447-450
    • /
    • 2012
  • An analysis of chill-down process was performed for 30 tonf Turbopump-Gas generator coupled tests. The chill-down process must be fulfilled before liquid rocket engine test using cryogenic propellant. Cavitation, damage and/or combustion instability due to bubble of propellant must be eliminated by chill-down process in a test specimen, especially cryogenic pump. The analysis of test data obtained by 30 tonf TP-GG coupled tests was performed in order to be based on the test process of KSLV-II liquid propellant rocket engine which will be developed. To macroscopically understand the process of chill-down from the viewpoint of test procedure the temperatures of important part and total time of chill-down process were analyzed.

  • PDF

Mechanical Properties of PPLP Material at Cryogenic Temperature

  • Gorospe, Alking B.;Shin, Hyung-Seop
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.4
    • /
    • pp.16-19
    • /
    • 2012
  • In power cables as one of the important power applications adopting HTS tapes, a good insulation should be kept at its optimum performance. As an insulation material for superconducting device applications, polypropylene laminated paper (PPLP) is now widely used instead of the conventional Kraft paper. In addition to its dielectric property, the insulation material should also possess superior mechanical property at cryogenic temperatures and operability that is necessary for the insulation winding process. This study aims to evaluate the mechanical property of the PPLP material at ambient and cryogenic temperatures. At cryogenic temperature, the failure stress of PPLP increased significantly as compared with that at ambient temperature. The failure stress at both temperatures depended upon the sample orientation to the load application.

Numerical Computations of Cryogenic Flows around Turbopump Inducer (터보펌프 인듀서 주변 극저온 유동에 대한 수치해석 연구)

  • Min, D.;Kim, H.;Kim, C.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.187-195
    • /
    • 2012
  • This paper deals with numerical computations of cryogenic flows around turbopump inducer. Firstly, we introduce numerical methods to compute compressible/incompressible cryogenic two-phase flow. As a validation problem, computation results of 2 dimensional/axi-symmetric cryogenic flow will be presented. In this process, various cavitation model will be compared. Finally, numerical simulation of 3 dimensional turbopump inducer will be presented.

  • PDF

Investigation of LN2 Lubrication Effect in Cryogenic Machining -Part 1: Friction Coefficient related to cutting force component with Physical Evidences- (초 냉각 가공에서의 LN2 의 감찰 효과 연구 -물리적 현상에 의한 마찰 계수-)

  • Seong-Chan, Jun;Woo-Cheol Jeong
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2002.05a
    • /
    • pp.207-214
    • /
    • 2002
  • This paper presents some physical evidences indicating that reduced friction occurs in an cryogenic machining process, in which LN2 is applied selectively in well-controlled jets to the selected cutting zone. In machining tests, cryogenic machining reduced the force component in the feed direction, indicating that the chip slides on the tool rake face with lower friction. This study also found that the effectiveness of LN2 lubrication depends on the approach how LN2 is applied regarding cutting forces related.

  • PDF

Optimization of Cleaning Parameters in Cryogenic $CO_2$ Cleaning Process (극저온 $CO_2$ 세정공정의 세정인자 최적화)

  • Lee, Seong-Hoon;Seok, Jong-Won;Kim, Pil-Kee;Oh, Seung-Hee;Seok, Jong-Hyuk;Oh, Byung-Joon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.9
    • /
    • pp.109-115
    • /
    • 2008
  • The cleaning process of contaminant particles adhering to the microchips, integrated circuits (ICs) or the like is essential in modern microelectronics industry. In the cleaning process particularly working with the application of inert gases, the removal of contaminant particles of submicron scale is very difficult because the particles are prone to reside inside the boundary layer of the working fluid, The use of cryogenic $CO_2$ cleaning method is increasing rapidly as an alternative to solve this problem. In contrast to the merits of high efficiency of this process in the removal of minute particles compared to the others, even fundamental parametric studies for the optimal process design in this cleaning process are hardly done up to date, In this study, we attempted to measure the cleaning efficiency with the variations of some principal parameters such as mass flow rate, injection distance and angle, and tried to draw out optimal cleaning conditions by measuring and evaluating an effective cleaning width called $d_{50}$.

Design of BOG re-liquefaction system of 20,000 m3 liquid hydrogen carrier

  • Byeongchang Byeon;Hwalong You;Dongmin Kim;Keun Tae Lee;Mo Se Kim;Gi Dock Kim;Jung Hun Kim;Sang Yoon Lee;Deuk Yong Koh
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.3
    • /
    • pp.49-55
    • /
    • 2023
  • This paper presents the design of a re-liquefaction system as a BOG (boil-off gas) handling process in liquid hydrogen transport vessels. The total capacity of the re-liquefaction system was assumed to be 3 ton/day, with a BOR (boil-off rate) of 0.2 %/day inside the cargo. The re-liquefaction cycle was devised using the He-Brayton Cycle, incorporating considerations of BOG capacity and operational stability. The primary components of the system, such as compressors, expanders, and heat exchangers, were selected to meet domestically available specifications. Case studies were conducted based on the specifications of the components to determine the optimal design parameters for the re-liquefaction system. This encompassed variables such as helium mass flow rate, the number of compressors, compressor inlet pressure and compression ratio, as well as the quantity and composition of expanders. Additionally, an analysis of exergy destruction and exergy efficiency was carried out for the components within the system. Remarkably, while previous design studies of BOG re-liquefaction systems for liquid hydrogen vessels were confined to theoretical and analytical realms, this research distinguishes itself by accounting for practical implementation through equipment and system design.

A Study of Mechanical Properties for Austenite Stainless Steel of Cryogenic Liquied Nitrogen Storage Tank (초저온 액화질소 저장용기의 오스테나이트계 스테인리스강의 기계적 특성 연구)

  • Choi, Dong-Jun;Park, Hyung-Wook;Cho, Jong-Rae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.451-459
    • /
    • 2011
  • Austenitic stainless steels of 300 series are widely used as the structural material due to excellent their cryogenic mechanical properties at cryogenic temperature. There are 316 steel which molybdenum is added to improve the austenitic stability, 316L which carbon contents is reduced to decrease the grain boundary precipitation during welding process, and 316LN which nitrogen is added to improve the austenitic stability and the mechanical strength. But material researches for the welding conditions and mechanical properties at the cryogenic temperature were insufficient so far. In this paper, the characteristics of mechanical properties considering the effect of welding conditions and cryogenic temperature are studied.

A Convergence study on the Research and Development process for the cryogenic submerged pump (극저온 잠액식 펌프 연구개발 프로세스에 관한 융합 연구)

  • Bae, Tae-Yong;Hwang, Gyu-Wan
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.10
    • /
    • pp.185-191
    • /
    • 2017
  • Recently, for such reasons as its inexpensive price and eco-friendliness, LNG has been under the limelight as an alternative fuel for vessels and is expected to grow rapidly in the industry. However, the technology level of domestic shipbuilders in manufacturing the cryogenic pump designed to supply LNG for vessels is so low that design and manufacturing technology of core parts are in urgent need. Therefore, this study describes the stepwise development procedure of cryogenic submerged centrifugal pump for ship LNG supply system. And it aims to suggest practical and specific development methods of the pump by approaching the characteristics of each step and major development items from the standpoint of engineering and management.