• Title/Summary/Keyword: Cryogenic Process

Search Result 244, Processing Time 0.026 seconds

Performance Analysis of Shell Coal Gasification Combined Cycle systems (Shell 석탄가스화 복합발전 시스템의 성능해석 연구)

  • Kim, Jong-Jin;Park, Moung-Ho;Song, Kyu-So;Cho, Sang-Ki;Seo, Seok-Bin;Kim, Chong-Young
    • Journal of Energy Engineering
    • /
    • v.6 no.1
    • /
    • pp.104-113
    • /
    • 1997
  • This study aims to develop an analysis model using a commercial process simulator-ASPEN PLUS for an IGCC (Integrated Gasification Combined Cycle) system consisting a dry coal feeding, oxygen-blown entrained gasification process by Shell, a low temperature gas clean up process, a General Electric MS7001FA gas turbine, a three pressure, natural recirculation heat recovery steam generator, a regenerative, condensing steam turbine and a cryogenic air separation unit. The comparison between those results of this study and reference one done by other engineer at design conditions shows consistency which means the soundness of this model. The greater moisture contents in Illinois#6 coal causes decreasing gasifier temperature and the greater ash and sulfur content hurt system efficiency due to increased heat loss. As the results of sensitivity analysis using developed model for the parameters of gasifier operating pressure, steam/coal ratio and oxygen/coal ratio, the gasifier temperature increases while combustible gases (CO+H2) decreases throughout the pressure going up. In the steam/coal ratio analysis, when the feeding steam increases the maximum combustible gas generation point moves to lower oxygen/coal ratio feeding condition. Finally, for the oxygen/coal ratio analysis, it shows oxygen/coal ratio 0.77 as a optimum operating condition at steam/coal feeding ratio 0.2.

  • PDF

Analytical Investigation on Temperature Rise of Liquid Oxygen in Propellant Tank (추진제 탱크내의 액체산소 온도상승에 대한 해석적 고찰)

  • Cho Namkyung;Jeong Yonggahp;Kim Youngmog;Jeong Sangkwon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.25-37
    • /
    • 2005
  • For pump-fed rocket propulsion system, the temperature of LOX to be supplied to turbopump inlet should be satisfied with pump inlet temperature requirement during all operating stages, as excessive temperatures can result in cavitation due to reduction in NPSH, thus either damaging the pump or adversely affecting pump performance rise. So exact estimation of LOX temperature rise is absolutely needed for developing reliable propulsion system. This paper presents systematic analysis scheme for estimating inner process of cryogenic propellant tank which is needed for LOX temperature rise. And this paper presents LOX temperature rise and thermal stratification for all rocket operating stages including cooling, filling, waiting, pre-pressurization and firing, with the application of buoyancy driven boundary layer theory.

CH4/N2 Separation on Flexible Metal-Organic Frameworks(MOFs) (플렉서블한 금속-유기 골격체(MOFs)를 활용한 메탄/질소 분리)

  • Jung, Minji;Park, Jawoo;Oh, Hyunchul
    • Korean Journal of Materials Research
    • /
    • v.28 no.9
    • /
    • pp.506-510
    • /
    • 2018
  • Nitrogen is a serious contaminant in natural gas because it decreases the energy density. The natural gas specification in South Korea requires a $N_2$ content of less than 1 mol%. Thus, cost-effective $N_2$ removal technology from natural gas is necessary, but until now the only option has been energy-intensive processes, e.g., cryogenic distillation. Using porous materials for the removal process would be beneficial for an efficient separation of $CH_4/N_2$ mixtures, but this still remains one of the challenges in modern separation technology due to the very similar size of the components. Among various porous materials, metal-organic frameworks (MOFs) present a promising candidate for the potential $CH_4/N_2$ separation material due to their unique structural flexibility. A MIL-53(Al), the most well-known flexible metal-organic framework, creates dynamic changes with closed pore (cp) transitions to open pores (ops), also called the 'breathing' phenomenon. We demonstrate the separation performance of $CH_4/N_2$ mixtures of MIL-53(Al) and its derivative $MIL-53-NH_2$. The $CH_4/N_2$ selectivity of $MIL-53-NH_2$ is higher than pristine MIL-53(Al), suggesting a stronger $CH_4$ interaction with $NH_2$.

Structural Safety Assessment of Independent Spherical LNG Tank(1st Report) - Fatigue Strength Analysis Based on the S-N Approach - (독립구형 LNG 탱크의 구조안전성 평가(제1보) - 피로균열 발생수명 예측 -)

  • In-Sik Nho;Yong-Yun Nam;Ho-Sup Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.132-140
    • /
    • 1993
  • The design of LNG ship needs very high level structural design/analysis technology compared with conventional ship types because it requires perfect security against the extremly dangerous and cryogenic cargo. Hence, present paper describes the general procedure of the structural safety assessment for independent tank type LNG ship, which contains following items. 1) Long term prediction of the wave induced stresses including ship motion analysis, structural analysis of hull and tank and stochastic analysis process of ocean waves. 2) Fatigue strength analysis of a tank structure based on the S-N approach. 3) Structural safety assessment against the fatigue crack propagation based on the LBF(Leak Before Failure) concept. The first report focuced on the item (1) (2) and example calculation was performed on a prototype LNG ship. The remained part will be covered by the second report.

  • PDF

RETF 액체산소 공급설비 및 엔진 수류시험

  • Han, Yeoung-Min;Cho, Nam-Kyung;Kim, Seung-Han;Chung, Yong-Ghap;Park, Sung-Jin;Lee, Kwang-Jin;Kim, Young-Han;Moon, Il-Yoon
    • Aerospace Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.123-131
    • /
    • 2002
  • In this paper, characteristics of cryogenic liquid oxygen was examined during cold flow of KSR-III main engine at each stage. The effect of venting was examined at the stage of cooling and at the pressurization stage, the interaction between nitrogen gas and liquid oxygen was also examined. The characteristic of liquid oxygen in the engine manifold was analyzed. The results showed that venting was the primary role at the cooling process and the interaction of nitrogen gas and liquid oxygen in the run tank is limited at the surface area. With the sampling rate of 1KHz static and dynamic pressure were measured in the rocket engine manifold and in the LOX supply equipment. 32.5mm and 38mm orifice were installed for the tests and pressure condition of liquid oxygen was 23Bar, 29Bar, 41Bar. Increase of orifice diameter and decrease of supply pressure reduced the perturbation of pressure in engine manifold.

  • PDF

Development of the Infrared Space Telescope, MIRIS

  • Han, Won-Yong;Lee, Dae-Hee;Park, Young-Sik;Jeong, Woong-Seob;Ree, Chang-Hee;Nam, Uk-Won;Moon, Bon-Kon;Park, Sung-Joon;Cha, Sang-Mok;Pyo, Jeong-Hyun;Park, Jang-Hyun;Ka, Nung-Hyun;Seon, Kwang-Il;Lee, Duk-Hang;Rhee, Seung-Woo;Park, Jong-Oh;Lee, Hyung-Mok;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.64.1-64.1
    • /
    • 2011
  • MIRIS (Multipurpose Infra-Red Imaging System), is a small infrared space telescope which is being developed by KASI, as the main payload of Science and Technology Satellite 3 (STSAT-3). Two wideband filters (I and H) of the MIRIS enables us to study the cosmic infrared background by detecting the absolute background brightness. The narrow band filter for Paschen ${\alpha}$ emission line observation will be employed to survey the Galactic plane for the study of warm ionized medium and interstellar turbulence. The opto-mechanical design of the MIRIS is optimized to operate around 200K for the telescope, and the cryogenic temperature around 90K for the sensor in the orbit, by using passive and active cooling technique, respectively. The engineering and qualification model of the MIRIS has been fabricated and successfully passed various environmental tests, including thermal, vacuum, vibration and shock tests. The flight model was also assembled and is in the process of system optimization to be launched in 2012 by a Russian rocket. The mission operation scenario and the data reduction software is now being developed. After the successful mission of FIMS (the main payload of STSAT-1), MIRIS is the second Korean space telescope, and will be an important step towards the future of Korean space astronomy.

  • PDF

The Homogeneity and Short-term Stability Test of Bio-matrix Reference Material for Total Mercury Analysis of Freshwater Fish (담수 어류 총수은 분석용 생물 표준물질 균질성, 안정성 시험평가)

  • Lee, Soo Yong;Lee, Jangho;Chung, David;Shim, Kyu-Young;Lee, Ha-Eun;Park, Ki-Wan
    • Journal of Environmental Science International
    • /
    • v.28 no.11
    • /
    • pp.1033-1040
    • /
    • 2019
  • The National Environmental Specimen Bank (NESB) has set up a plan to develop reference materials in the facility for assuring analytical quality and validating analytical methods for its monitoring samples. Some of the crucial characteristics that reference materials must consist of are homogeneity and stability of both intra and inter-bottles. In this study, we examined the homogeneity and stability of cryogenically-milled muscle samples, from Common Carp (Cyprinus carpio) for total mercury. Homogeneity was tested using ANOVA analysis and regression analysis was used to test short-term stability. The variations of total mercury concentration did not significantly differ between the intra and the inter-bottle (F=0.8, p=0.37). Additionally, relative standard deviation of the total mercury concentration showed low values (2.28%). For the short-term stability test, total mercury variations were not statistically significant as demonstrated by the result of the regression analysis (F ratio = 3.11, p = 0.18). This suggests that the cryogenic-milling process has statistically proven the degree of homogeneity and short-term stability for samples of carp muscles in the chemical analysis for total mercury.

Evaluation of Homogeneity and Stability of Korean Mussel (Mytilus coruscus) Standards for Cadmium Analysis (카드뮴 분석용 홍합(Mytilus coruscus) 표준물질의 균질성 및 안정성 시험평가)

  • Lee, Ha-Eun;Lee, Jangho;Chung, David;Lee, Soo Yong;Park, Ki-Wan;Shim, Kyu-Young
    • Journal of Environmental Science International
    • /
    • v.28 no.11
    • /
    • pp.1041-1045
    • /
    • 2019
  • In this study, the KS A ISO Guide 35 was applied to develop analytical standards for heavy metal cadmium using the Korean mussel (Mytilus coruscus) and to evaluate the homogeneity and stability of the sample. Some of the crucial characteristics that reference materials must consist include homogeneity and stability of both intra- and inter-bottles. We tested homogeneity using ANOVA analysis and short-term stability using regression analysis. The variations of cadmium concentrations did not significantly differ between intra- and inter-bottles (F=0.41, p=0.90). For short-term stability verification, cadmium analysis results were not statistically significant as a result of the regression analysis (significance F=0.51, p=0.53). This suggests that we can not dismiss the null hypothesis that there is no significant variation in concentrations of cadmium over time. These results indicated that the cryogenic-milling process has statistically proven the short-term stability for materials from mussels in the chemical analysis of cadmium. Therefore, we propose that the Korean mussel's reference material developed for the proficiency test could be used as a tool to evaluate reliability and consistency in laboratories.

Design Strategies for Adsorbents with Optimal Propylene/propane Adsorptive Separation Performances (최적의 프로필렌/프로판 흡착 분리 성능을 가지는 흡착제의 개발 전략들)

  • Kim, Tea-Hoon;Lee, Seung-Joon;Kim, Seo-Yul;Kim, Ah-Reum;Bae, Youn-Sang
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.484-491
    • /
    • 2019
  • An efficient propylene/propane separation technology is needed to obtain high-purity propylene, which is a raw material for polypropylene synthesis. Since conventional cryogenic distillation is an energy-intensive process due to the similar physicochemical properties of propylene and propane, adsorptive separation has gained considerable interest. In this study, we have computationally investigated the changes in adsorption separation performances by arbitrarily controlling the adsorption strength of open metal sites in two different types of metal-organic frameworks (MOFs). Through the evaluation of adsorptive separation performances in terms of working capacity, selectivity, and Adsorption Figure of Merit (AFM), we have suggested proper density and strength of adsorption sites as well as appropriate temperature condition to obtain optimal propylene/propane adsorptive separation performances.

Homogeneity Test on Bio-Matrix Reference Material for Chemical Analysis of Environmental Pollutants (환경 오염물질 분석용 생물 표준물질 균질성 시험평가 연구)

  • Lee, Jangho;Chung, David;Choi, Jeong-Heui;Lee, Jongchun;Lee, Soo Yong
    • Journal of Environmental Science International
    • /
    • v.27 no.12
    • /
    • pp.1271-1277
    • /
    • 2018
  • The National Environmental Specimen Bank (NESB) has been sampling and cryogenically preserving various wildlife specimens to monitor bio-accumulations of chemical pollutants since 2010. Recently, the NESB set up a plan to develop reference materials at their facility to assure the analytical quality of and validate the analytical methods for their monitoring samples. One of the crucial characteristics of reference materials is intra- and inter-bottle homogeneity. In this study, we used ANOVA for total mercury concentrations in some samples to validate their homogeneities after milling and homogenization. We examined the intra- and inter-bottle homogeneities of two cryogenically-milled samples (Korean mussel (Mytilus coruscus) and black-tailed gull's egg (Larus crassirostris). The variations in the total mercury concentrations were not significantly different intra- and inter-bottle (mussel: F=0.74, p=0.67; gull egg: F=1.96, p=0.10). Additionally, the relative standard deviations of the total mercury concentrations showed low values (mussel: 2.02%, gull egg: 1.78%). Therefore, the cryogenic-milling process statistically proves the homogeneity of the materials of mussels and sea gull eggs for chemical analysis for total mercury.