• 제목/요약/키워드: Cryogenic Cycling

검색결과 7건 처리시간 0.019초

Cryogenic Thermal Cycling Test on IGRINS cross-disperser VPH Grating

  • 정현주;임주희;이성호;;박수종;육인수
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.156-156
    • /
    • 2011
  • VPH (Volume Phase Hologram) grating is one of the transmission gratings and is known as its remarkable efficiency (>90%). It has two different densities of gelatins causing interference patterns. The VPH grating is favored in many astronomical instruments these days and also IGRINS, which is up coming near infrared high-resolution spectroscope expected to see the first light next year, uses the VPH grating as its cross-disperser. The infrared astronomical instruments operate at cryogenic temperature (~100K) in order to cut down thermal noise and the optical components of IGIRNS will be operated at 130K. The VPH grating is sandwiched in between fused silica or glass and glued together using optical adhesive. IGRINS is expected to go through 50 times of thermal cycling in 10 years including the performance test and this research is to check whether the physical characteristic such as the adhesion or dichromatic gelatin does not break and change from the several cryogenic thermal cycling. The two identical test gratings provided from Kaiser Optical System, Inc. are used in this test. One VPH grating is cooled down to 100K for 2 hours with maximum dT/dt = 5 and warmed up to the room temperature and another grating is kept stored in the room temperature and used as a control sample. In order to check the change, we inspected the grating with eyes and checked its efficiency and transmission at the room temperature every 10 cycling. From the 40 times of cryogenic temperature cool down cycling, the VPH grating showed no signs of change within the error compared to the control sample. We concluded the VPH grating is durable through several cryogenic thermal cycling.

  • PDF

왕복선 연료탱크 적용을 위한 탄소/고분자 복합재료의 극저온-고온 싸이클링 (CRYOGENIC AND ELEVATED TEMPERATURE CYCLING OF CARBON / POLYMER COMPOSITES FOR RESUABLE LAUNCH VEHICLE CRYOGENIC TANKS)

  • 예병한;원용구
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제20회 춘계학술대회 논문집
    • /
    • pp.151-155
    • /
    • 2003
  • An apparatus was developed to repetitively apply a -196 $^{\circ}C$ thermal load to coupon-sized mechanical test specimens. Using this device, IM7/5250-4 (carbon / bismaleimide) cross-ply and quasi-isotropic laminates were submerged in liquid nitrogen (L$N_2$) 400 times. Ply-by-Ply micro-crack density, laminate modulus, and laminate strength were measured as a function of thermal cycles. Quasi-isotropic samples of IM7/977-3 (carbon / epoxy) composite were also manually cycled between liquid nitrogen and an oven set at 120 $^{\circ}C$ for 130 cycles to determine whether including elevated temperature in the thermal cycle significantly altered the degree or location of micro-cracking. In response to thermal cycling, both materials micro-cracked extensively in the surface plies followed by sparse cracking of the inner plies. The tensile modulus of the IM7/5250-4 specimens was unaffected by thermal cycling, but the tensile strength of two of the lay-ups decreased by as much as 8.5 %.

  • PDF

극저온 환경에서 탄소섬유강화 직조/일방향 복합재료의 인장 물성 측정 (Tensile Properties of CERP Fabric/Unidirectional Composites under Cryogenic Environment)

  • 김명곤;김철웅;강상국;김천곤;홍창선
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.115-118
    • /
    • 2003
  • This research aims to measure mechanical tensile properties of CFRP composites for cryogenic tank material. Through the cryogenic chamber, tensile tests are peformed under cryogenic temperature for graphite/epoxy fabric specimen aged at $-150^{\circ}C$ for 30hrs with load and graphite/epoxy unidirectional specimen 3-cycled from RT to $-100^{\circ}C$ with load. For graphite/epoxy fabric specimen, tensile modulus showed to increase after aging at cryogenic temperature(CT) while to decrease after aging at room temperature(RT) and tensile strength is more decreased after CT-aged than at RT-aged. For graphite/epoxy unidirectional specimen, tensile modulus was almost not changed after 3-cycling but strength showed the trend of decrease as increase the number of cycling.

  • PDF

탄소/고분자 복합재료의 극저온-고온 싸이클링 (CRYOGENIC AND ELEVATED TEMPERATURE CYCLING OF CARBON/POLYMER COMPOSITES)

  • Yeh, Byung-Hahn;Won, Yong-Gu
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.38-42
    • /
    • 2002
  • An apparatus was developed to repetitively apply a $-196^{\circ}C$ thermal load to coupon-sized mechanical test specimens. Using this device, IM7/5250-4 (carbon / bismaleimide) cross-ply and quasi-isotropic laminates were submerged in liquid nitrogen ($LN_2$) 400 times. Ply-by-ply micro-crack density, laminate modulus, and laminate strength were measured as a function of thermal cycles. Quasi-isotropic samples of IM7/977-3 (carbon / epoxy) composite were also manually cycled between liquid nitrogen and an oven set at $120^{\circ}C$ for 130 cycles to determine whether including elevated temperature in the thermal cycle significantly altered the degree or location of micro-cracking. In response to thermal cycling, both materials micro-cracked extensively in the surface plies fellowed by sparse cracking of the inner plies. The tensile modulus of the IM7/5250-4 specimens was unaffected by thermal cycling, but the tensile strength of two of the lay-ups decreased by as much as 8.5%.

  • PDF

극저온 환경에서 탄소섬유강화 복합재의 인장 물성에 관한 연구 (A Study on Tensile Properties of CFRP Composites under Cryogenic Environment)

  • 김명곤;강상국;김천곤;공철원
    • Composites Research
    • /
    • 제17권6호
    • /
    • pp.52-57
    • /
    • 2004
  • 본 연구에서는 환경 챔버를 이용한 극저온 환경에서, 열.하중 사이클에 따른 탄소섬유강화 복합재의 인장 물성 변화를 고찰하였다. Graphite/epoxy 일방향 복합재 시편에 대하여 시편 상온파손하중의 절반을 가한 상태에서, 상온에서 $-50^{\circ}C$, $-100^{\circ}C$, 그리고 $-150^{\circ}C$ 까지 각각 3회, 6회, 그리고 10회의 열-하중 사이클을 수행한 후 복합재의 인장 강도와 강성을 측정하였다. 그 결과, 온도가 낮아질수록 복합재의 인장 강성은 증가한 반면, 인장 강도는 감소함을 보였다. 그러나 복합재의 인장 강성은 저온 사이클 횟수에 거의 영향을 받지 않았으며 인장 강도는 사이클을 수행하지 않았을 때 보다 오히려 저온 사이클 수행 후 증가함을 확인할 수 있었다. 따라서 실험결과의 고찰을 위해 저온에서 복합재 시편의 열팽창계수를 측정하였고, 주사 전자 현미경 사진을 통해 섬유와 모재의 계면을 분석하였다.

열 충격에 따른 탄소 직물 복합재료의 역학적 특성 평가 (Evaluation of Mechanical Properties of Carbon Fabrics Composite with Thermal Shock)

  • 김재홍;이중호;정경호;강태진
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.79-82
    • /
    • 2005
  • In this study, mechanical properties of carbon fabrics composite under the thermal shock cycling were evaluated. Due to the interactions between fiber and polymer matrix, it is reasonable to conclude that both thermal cycles of thermal shock result in improvement of interlaminar shear strength(ILSS) for the longer conditioning time duration. The rise in ILSS may be attributed to the improved adhesion by cryogenic compressive stress and also by the post-curing strengthening effect. However, the flexural and tensile strength were decreased with increasing conditioning time of thermal cycle.

  • PDF

Effect of ceramic powder addition on the insulating properties of polymer layer prepared by dip coating method

  • Kim, S.Y.;Lee, J.B.;Kwon, B.G.;Hong, G.W.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제16권1호
    • /
    • pp.14-18
    • /
    • 2014
  • The mechanical, electrical and thermal characteristics of insulating materials may significantly affect the performance and reliability of electrical devices using superconductors. General method to provide insulating layer between coated conductors is wrapping coated conductor with Kapton tape. But uniform and compact wrapping without failure or delamination in whole coverage for long length conductor is not a simple task and need careful control. Coating of insulating layer directly on coated conductor is desirable for providing compact insulating layer rather than wrapping insulating layers around conductor. Ceramic added polymer has been widely used as an insulating material for electric machine because of its good electrical insulating properties as well as excellent heat resistance and fairy good mechanical properties. The insulating layer of coated conductor should have high breakdown voltage and possesses suitable mechanical strength and maintain adhesiveness at the cryogenic temperature where it is used and withstand stress from thermal cycling. The insulating and mechanical properties of polymer can be improved by adding functional filler. In this study, insulating layer has been made by adding ceramic particles such as $SiO_2$ to a polymer resin. The size, amount and morphology of added ceramic powder was controlled and their effect on dielectric property of the final composite was measured and discussed for optimum composite fabrication.