• Title/Summary/Keyword: Cryogenic Component

Search Result 38, Processing Time 0.021 seconds

Investigation of LN2 Lubrication Effect in Cryogenic Machining -Part 1: Friction Coefficient related to cutting force component with Physical Evidences- (초 냉각 가공에서의 LN2 의 감찰 효과 연구 -물리적 현상에 의한 마찰 계수-)

  • Seong-Chan, Jun;Woo-Cheol Jeong
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2002.05a
    • /
    • pp.207-214
    • /
    • 2002
  • This paper presents some physical evidences indicating that reduced friction occurs in an cryogenic machining process, in which LN2 is applied selectively in well-controlled jets to the selected cutting zone. In machining tests, cryogenic machining reduced the force component in the feed direction, indicating that the chip slides on the tool rake face with lower friction. This study also found that the effectiveness of LN2 lubrication depends on the approach how LN2 is applied regarding cutting forces related.

  • PDF

Cryogenic cooling system for HTS cable

  • Yoshida, Shigeru
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • Recently, Research and development activity of HTS (High Temperature Superconducting) power application is very progressive worldwide. Especially, HTS cable system and HTSFCL (HTS Fault current limiter) system are proceeding to practical stages. In such system and equipment, cryogenic cooling system, which makes HTS equipment cooled lower than critical temperature, is one of crucial components. In this article, cryogenic cooling system for HTS application, mainly cable, is reviewed. Cryogenic cooling system can be categorized into conduction cooling system and immersion cooling system. In practical HTS power application area, immersion cooling system with sub-cooled liquid nitrogen is preferred. The immersion cooling system is besides grouped into open cycle system and closed cycle system. Turbo-Brayton refrigerator is a key component for closed cycle system. Those two cooling systems are focused in this article. And, each design and component of the cooling system is explained.

The Lubrication Effect of Liquid Nitrogen in Cryogenic Machining [I]- Part 1: Cutting Force Component with Physical Evidences - (Liquid Nitrogend의 감찰효과 -물리적 현상에 의한 절삭력-)

  • Jun Seong Chan;Jeong Woo Cheol
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.2
    • /
    • pp.209-221
    • /
    • 2002
  • Machinability improvement by the use of liquid nitrogen in cryogenic machining has been reported in various studies. This has been mostly attributed to the cooling effect of liquid nitrogen. However, No study has been found in discussion on whether liquid nitrogen possesses lubrication effect in cryogenic cutting. In machining tests, cryogenic machining reduced the force component in the feed direction, indicating that the chip slides on the tool rake face with lower friction. This study also found that the effectiveness of LN2 lubrication depends on the approach how LN2 is applied regarding cutting forces related.

Investigation on the tensile properties of glass fiber reinforced polymer composite for its use as a structural component at cryogenic temperature

  • Shrabani Ghosh;Nathuram Chakrobarty;Swapan C. Sarkar
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.3
    • /
    • pp.43-48
    • /
    • 2023
  • Polymer composites, especially glass fiber reinforced polymer (GFRP) are finding ever-increasing applications in areas such as superconductivity, space technology, cryogenic rocket engines, and cryogenic storage vessels. Various components made of polymer composites are much lighter than their metallic counterparts but have equivalent strength for ultra-low temperature applications. In this paper, we have investigated the tensile properties of an indigenously prepared unidirectional cylindrical hollow composite tube for its use as a neck of the cryogenic vessel. XRD and SEM of the tube are completed before cryogenic conditioning to ascertain the fiber and resin distribution in the matrix. The result shows that for composites, after 15, 30, 45, and 60 minutes of cryogenic conditioning at 77K in a liquid nitrogen bath, the strength and modulus increase significantly with the increase of strain rate and reach the optimum value for 45 minutes of conditioning. The results are encouraging as they will be helpful in assessing the suitability of GFRP in the structural design of epoxy-based components for cryogenic applications.

Precision Hard Turning with Cryogenic Cooling (액화질소를 이용한 고정도 하드 터닝)

  • 박영우;김기수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1048-1051
    • /
    • 2001
  • This paper presents an analytical and experimental study of a cryogenic machining for precision hard turning. A cryogenic circulation system is designed and mounted on the top of the tool insert. The machining process used is facing operation on a CNC turning center with dry and cryogenic conditions. The tool temperature and cutting forces are measured by the K-type thermocouple and by a three-component Kistler dynamometer, respectively. Both data are fed into the data acquisition program through an A/D card. Surface roughness and form accuracy of the machined surface are measured by WYKO NT2000. It is also found that surface roughness and form accuracy with cryogenic cooling are better than those with no coolant.

  • PDF

Conceptual design of cryogenic turbo expander for 10 kW class reverse Brayton refrigerator

  • Lee, Chang Hyeong;Kim, Dong Min;Yang, Hyung Suk;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.41-46
    • /
    • 2015
  • Recently, the development of the HTS power cable is actively promoted. As the length of HTS power cable increases, there have been many efforts to develop large capacity cryocooler. Among the various cryocooler, the Brayton refrigerator is the most competitive for HTS power cable. The Brayton refrigerator is composed of recuperative heat exchangers, a compressor, and a cryogenic turbo expander. In these components, the cryogenic turbo expander is a part to decrease the temperature and it is the most significant component that is closely related with overall system efficiency. It rotates with high speed using a high-pressure helium or neon gas at cryogenic temperature. This paper describes the design of a 10 kW class Brayton refrigeration cycle and the cryogenic turbo expander. Flow and structural analysis are performed for the rotating impeller and nozzle to verify the efficiency and the design performance.

Helium guard system design for HIAF iLinac cryogenic distribution system

  • Xianjin Wang;Shuping Chen;Wen Jun;Dajun Fan;Liming Zhu;Yanan Lib;Xiaofei Niu;Junhui Zhang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.1
    • /
    • pp.6-10
    • /
    • 2023
  • 2 K superfluid helium cryogenic system is the crucial component of many large accelerators. When the cryogenic system is operating at 2K@3129Pa, many room-temperature parts are connected to superfluid helium via tubes. Air Leakage in these connections may lead to air contamination of the cryogenic system. Air contamination may cause equipment failure in cryogenic systems and, in extreme cases, render the entire accelerator system inoperable. Helium guard is a technique that guards against air contamination of these sub-atmospheric pressure connections in 2 K superfluid helium cryogenic system. This paper introduces a typical 2 K cryogenic distribution design for large accelerators, and make risk analysis of air contamination. Finally, the analysis of specific leakage points and detailed engineering design are presented, which may be used as a reference when designing of a 2 K superfluid helium cryogenic distribution system.

Prediction of the effective thermal conductivity of microsphere insulation

  • Jin, Lingxue;Park, Jiho;Lee, Cheonkyu;Seo, Mansu;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.1
    • /
    • pp.36-41
    • /
    • 2014
  • Since glass microsphere has high crush strength, low density and small particle size, it becomes alternative thermal insulation material for cryogenic systems, such as storage and transportation tank for cryogenic fluids. Although many experiments have been performed to verify the effective thermal conductivity of microsphere, prediction by calculation is still inaccurate due to the complicated geometries, including wide range of powder diameter distribution and different pore sizes. The accurate effective thermal conductivity model for microsphere is discussed in this paper. There are four mechanisms which contribute to the heat transfer of the evacuated powder: gaseous conduction ($k_g$), solid conduction ($k_s$), radiation ($k_r$) and thermal contact ($k_c$). Among these components, $k_g$ and $k_s$ were calculated by Zehner and Schlunder model (1970). Other component values for $k_c$ and $k_r$, which were obtained from experimental data under high vacuum conditions were added. In this research paper, the geometry of microsphere was simplified as a homogeneous solid sphere. The calculation results were compared with previous experimental data by R. Wawryk (1988), H. S. Kim (2010) and the experiment of this paper to show good agreement within error of 46%, 4.6% and 17 % for each result.

Analysis of Propellant Feeding Sub-Systems for Liquid Rocket (SINDA/FLUINT를 활용한 발사체 추진기관 공급계 해석)

  • Cho, Nam-Kyung;Jeong, Yong-Gahp;Han, Sang-Yeop;Kim, Young-Mog
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.241-244
    • /
    • 2006
  • The analysis of propellant feeding sub-system is performed using a commercial code SINDA/FLUINT, the comprehensive finite-difference, one-dimensional, lumped parameter tool. With the code, cryogenic helium supply system, liquid oxygen supply system, helium injection cooling system are evaluated. The code gave satisfactory estimation scheme for propulsion system characterized by cryogenic temperature and high pressure, two phase flow. This paper focuses on presenting calculation scheme of propulsion sub-system using one-dimensional code like SINDA/FLUINT.

  • PDF

Deformation Analysis of Self-regulating Bellows in Joule-Thomson Cryocooler (줄-톰슨 극저온 냉각기용 벨로우즈의 변형해석)

  • Lee, Sang-Eun;Lee, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.4
    • /
    • pp.100-107
    • /
    • 2008
  • Bellows is an important component in Joule-Thomson cryocooler, which minimize the excessive flow of the cryogenic gas. The bellows is made of Monel 400 and its geometry is an axial symmetric shell. During cool-down process, the pressure and volume within bellows must be satisfied with Benedict-Webb-Rubin state equation. Moreover, Poisson's ratio of Monel 400 is nearly constants, but its Young's modulus varies for a drop in temperature. Under these conditions, bellows contracts in the axial direction like a spring. To evaluate deformation of bellows at cryogenic temperature, the numerical calculation of the volume within bellows and finite element analysis are iteratively used in this research. the numerical results show that deformation of the bellows is approximately linear for change of temperature.