• Title/Summary/Keyword: Cryogenic Blower

Search Result 5, Processing Time 0.02 seconds

Development and performance evaluation of a cryogenic blower for HTS magnets

  • Kwon, Yonghyun;Mun, Jeongmin;Lee, Jaehwan;Seo, Geonghang;Kim, Dongmin;Lee, Changhyeong;Sim, Kideok;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.4
    • /
    • pp.57-61
    • /
    • 2020
  • Cooling by gas helium circulation can be used for various HTS (high temperature superconductor) magnets operating at 20~40 K, and a cryogenic blower is an essential device for circulating gas helium in the cooling system. The performance of the cryogenic blower is determined by various design parameters such as the impeller diameter, the blade number, the vane angle, the volute cross-sectional area, and the rotating speed. The trailing edge angle and the height of impeller vane are also key design factors in determining the blower performance. This study describes the design, fabrication and performance evaluation of cryogenic blower to produce a flow rate of 30 g/s at 5 bar, 35 K gas helium. The impeller shape is designed using a specific speed/specific diameter diagram and CFD analysis. After the fabrication of the cryogenic blower, a test equipment is also developed using a GM cryocooler. The measured flow rates and the pressure differences are compared with the design values at various rotating speeds and the results show a good agreement. Isentropic efficiency is also evaluated using the measured pressures and temperatures.

Design and Performance Tests of a Cryogenic Blower for a Thermal Vacuum Chamber (열진공 챔버용 극저온 블로워 설계 및 성능평가)

  • Seo, Heejun;Cho, Hyokjin;Park, Sungwook;Moon, Gueewon;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.1008-1015
    • /
    • 2015
  • Thermal vacuum test should be performed prior to launch to verify satellites' functionality in extremely cold/hot temperatures and vacuum conditions. A thermal vacuum chamber used to perform the thermal vacuum tests of a satellite system and its components. A cryogenic blower is a core component of the gaseous nitrogen (GN2) closed loop thermal control system for thermal vacuum chambers. A final goal of this research is development of cryogenic blower. Design requirements of a blower are 150 CFM flow rate, 0.5 bara pressure difference, hot and cold temperatures. This paper describes the performance analysis of impeller by 1D, CFD commercial software, the design of the thermal protection interface between the driving part and the fluid part. The performance of the cryogenic blower is confirmed by test at the standard air condition and is verified by on the thermal vacuum chamber at the real operating condition.

Design and Performance Test of a Cryogenic Blower for Space Thermal Environment Simulation (우주 열환경 모사용 소형 극저온 블로워 설계 및 성능평가)

  • Seo, Heejun;Ahn, Sungmin;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.10
    • /
    • pp.833-839
    • /
    • 2013
  • Thermal vacuum test should be performed prior to launch to verify satellites' functionality in a harsh space environment which is represented by extremely cold temperatures and vacuum conditions. A thermal vacuum chamber which consists of a vacuum vessel, a pumping system, and a thermal control system are used to perform thermal vacuum tests of a satellite system and its components. A cryogenic blower is a core component of the closed loop thermal control system for thermal vacuum chambers. This paper describes the fan design of the cryogenic blower, the design of the thermal protection interface between the driving part and the fluid part, which were verified by thermal and structural analyses. The performance of the cryogenic blower is confirmed by similarity test on the test bench.

Design and Performance Test of a Closed Loop Thermal Control System for Thermal Vacuum Chamber (열진공 챔버용 폐회로 열제어시스템 설계 및 성능평가)

  • Seo, Heejun;Cho, Hyokjin;Park, Sungwook;Moon, Gueewon;Jung, Sanghun;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.1
    • /
    • pp.88-97
    • /
    • 2016
  • A closed loop thermal control system simulates space thermal environment to verify the satellites' functionality in extremely cold/hot temperature. It is composed of a cryogenic blower, thermal shroud, heater, cryogenic valves. This paper presents an overview of closed loop thermal control system's design parameter and test results for control parameter. A capacity of blower is calculated through energy balance equation and an advantage/disadvantage for a shroud material and a type was analysed. The thermal control system is controlled by a constant density of fluid in the system. A requested performance of closed loop thermal control system was verified by measuring a homogeneity and stability of shroud through control parameter such as density and RPM of blower.

Basic Design of 36 MTD Class Natural Gas BOG Re-Liquefaction System (36 MTD급 천연가스 BOG 재액화 플랜트 기본설계)

  • Ko, Junseok;Park, Seong-Je;Kim, Ki-Duck;Hong, Yong-Ju;Koh, Deuk-Yong;Kim, Hyobong;Yeom, Hankil
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.99-105
    • /
    • 2013
  • In this paper, we carried out the basic design of 36 MTD natural gas BOG re-liquefaction system to recover the generated natural gas during performance test of LNG pump and natural gas compressor. The re-liquefaction process of natural gas is designed to have 1500 kg/h of liquefaction rate with reverse Brayton refrigeration cycle. With the designed process, the variation of liquefaction rate is calculated for various inlet conditions of feed gas. From results, the liquefaction rate is more sensitive for inlet temperature than gas composition. The specifications of equipments such as gas blower, natural gas compressor, cryogenic heat exchanger and nitrogen compander are determined on the basis of the designed process. The requirement of power consumption and cooling water are also determined through the basic design.