• 제목/요약/키워드: Crushed Sand

검색결과 289건 처리시간 0.026초

Chloride Diffusion in Mortars - Effect of the Use of Limestone Sand Part II: Immersion Test

  • Akrout, Khaoula;Ltifi, Mounir;Ouezdou, Mongi Ben
    • International Journal of Concrete Structures and Materials
    • /
    • 제4권2호
    • /
    • pp.109-112
    • /
    • 2010
  • Part I of this study was devoted to the electrical accelerated chloride diffusion in mortars. In this second part, natural chloride diffusion has been investigated for four types of mortars under exposure to a 0.5 mol/L NaCl solution for a period of up to 35 days. Two different types of sand were used for the production of test samples: siliceous sand (used as a reference) and limestone sand (used in this study). The effect of water to cement ratio and exposure time on the diffusion coefficients of mortars was also investigated. In this study, the total and free chloride content and penetration depth of mortar were measured after immersion, and Fick's second law of diffusion was fitted to the experimental data to determine the diffusion coefficient. Their results show that the use of crushed limestone sand in mortar had a positive effect on the chloride resistance. The apparent diffusion coefficient in all specimens was smaller than that in siliceous sand mortar. However, the chloride penetration of these mortars was increased as exposure time progressed.

인공어초용 재생골재 콘크리트의 최적 배합설계 모델 (Optimal Mix Design Model of Recycled Aggregate Concrete for Artificial fishing Reefs)

  • 홍종현;김문훈;우광성;고성현
    • 한국해양공학회지
    • /
    • 제18권1호
    • /
    • pp.53-62
    • /
    • 2004
  • The Purpose of this study is to recycle the waste concrete, which is generated in huge quantities, from construction works. in order to achieve this goal, it is important to determine the compressive strength, workability, slump, and ultrasonic velocity of recycled aggregate concrete. Thus, several experiment parameters are considered, such as water-cement ratios, sand percentage, and fine aggregate composition ratios, in order to apply the recycled aggregate concrete to pre-cast artificial fishing reefs. From the results, it has been shown that the proper mix designs for reef concrete are W/C=45%, S/a=50%, SR50:SN50 in recycled sand and natural sand mix combination case, W/C=45%, S/a=50%, SC50:SN50 in crushed sand and natural sand mix combination case, W/C=45%, S/a=50%, SR50:SC50 in recycled sand and crushd sand mix combination case. Also, this study shows that the shape and surface roughness of fine aggregate particles have an effect on the strength, slump, ultrasonic velocity of tested concrete, and the compressive strength ratios of 7days' and 90days' curing ages of recycled aggregate concrete are about 70% and 110% of 28days' curing age.

고로슬래그를 사용한 고강도 부순모래 경화콘크리트의 물성에 관한 실험적 연구 (An Experimental Study on the Properties of the High Strength Crushed Sand Concrete Using Blast-Furnace Slag)

  • 최영화;김종인
    • 한국산업융합학회 논문집
    • /
    • 제8권3호
    • /
    • pp.169-176
    • /
    • 2005
  • The purpose of this study is to develop the high strength crushed sand concrete in conditions of water binder ratios of 25, 30, 35% and blast-furnace slag substitutions of 0, 15, 30, 45%. Additionally, in case of water binder ratio of 30%, the maximum size of coarse aggregate is two kinds of 13, 19 mm. The conclusions of this study are as follows ; 1. The compressive strength appeared lower in early age as compared with that of plain concrete according to increasing of the blast-furnace slag substitution. But, the compressive strength was respectively 5, 6, 10% larger than that of plain concrete in case of 25, 30, 35% water binder ratios, 28 days, 30% blast-furnace slag substitution and 19mm coarse aggregate. 2. According to increasing of the blast-furnace slag substitution, the modulus of elasticity and the tensile strength of concrete increased. 3. The length change by the shrinkage increased when the larger coarse aggregate was used, and decreased according to higher blast-furnace slag substitution.

  • PDF

고유동 충전재의 개발과 노후 터널의 배면공동 뒤채움에 관한 연구 (A Study on Development of the Controlled Low-Strength and High-Flowable Filling Material and Application of the Backfilling in Cavities behind the Old Tunnel Lining)

  • 마상준;서경원;배규진;안상철;임경하
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권3호
    • /
    • pp.177-184
    • /
    • 2002
  • The most tunnel damage such as cracks or leakage which exist in tunnel lining commonly, is caused by the cavities where exist behind the tunnel lining, through the tunnel safety inspections. These cavities were analysed to affect a stability of a running-tunnel seriously. This study is on the development of the controlled low-strength and flowable filling material which is able to apply to the cavity behind the tunnel lining. The major materials of backfilling developed are a crushed sand and a stone-dust which exists as a cake-state and is a by-product obtained in the producting process of aggregate. It is conformed with the design standard to the physical characteristics of backfilling. The backfilling material developed is designed to reduce the fair amount of cement. According to the designed compound ratio, it is carried out the laboratory tests such as a compressive strength and a chemical analyses and is applied to dilapidated old tunnel for an application assessment.

PP섬유 혼입율 및 잔골재 종류 변화에 따른 고성능 콘크리트의 폭렬특성 (Spalling Characteristics of High Performance Concrete According to Changes in PP Fiber Ratio and Type of Aggregate)

  • 정홍근;김원기;배장춘;한민철;양성환;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2009년도 춘계 학술논문 발표대회 학계
    • /
    • pp.61-64
    • /
    • 2009
  • This study is reviewed fire resistance characteristics of high strength concrete according to changes in PP fiber mixing ratio and type of fine aggregate, and the results can be summarized as follows. As fire resistance characteristics, all plain crushed sands prevented spalling regardless of increase in mixing ratio of PP fiber. Mixtures other than the plain showed satisfactory spalling prevention when 0.05 % or more of PP fiber was mixed. After the fire resistance experiment, the plain showed 5.5 % of mass loss rate when fiber was not mixed and others could not be measured. According to increase in mixing ratio of fiber, river sand with fineness modulus of 2.2 showed most satisfactory result of 34 %${\sim}$42 %. Mass loss rate after fire resistance experiment was most satisfactory at about 10 % in the plain crushed sand without mixing of fiber, and all other mixes with 0.05 % PP fiber or more showed 5${\sim}$10 % loss rate.

  • PDF

사력재와 석산재의 특성이 축조와 담수시 댐체 거동에 미치는 영향 (Effect of Characteristics of Sand/Gravel and Rock Materials on Behavior of Dam during Construction and Impounding)

  • 서민우;조성은;신동훈
    • 한국지반공학회논문집
    • /
    • 제24권6호
    • /
    • pp.45-55
    • /
    • 2008
  • 최근 전 세계적으로 대부분의 댐이 CFRD 형식으로 축조되지만, 일부 지역에서는 지형적 및 환경적 특성으로 인해 석산재를 대신하여 사력재가 댐의 주 축조재료로 이용되고 있다. 최근 국내에서도 사력재를 댐의 주축조재로 이용하도록 댐이 설계된 바 있다. 본 연구에서는 국내 현장에서 채취된 사력재 및 석산재를 대상으로 총 7 case의 대형다짐 및 삼축시험을 수행하였다. 다짐 시험 및 삼축시험을 통해 두 재료의 다짐, 전단 강도, 변형 특성을 산정하였으며, 이로부터 두 재료 사이에 존재하는 특성 차이를 확인하였다. 실험 결과 전단강도에 있어서 사력재가 석산재에 비해 결코 불리하지 않음을 알 수 있었으나, 변형 특성은 다소 차이를 보이고 있었다. 한편 실험 결과를 이용한 댐체 거동해석에서는 주축조 영역에 강성이 큰 사력재를 사용한 경우가 석산재를 사용한 경우에 비해 변형이 작게 발생하였다. 결론적으로 사력재의 강도 및 변형특성이 석산재와는 다소 차이를 보이지만, 석산재를 대신하여 댐의 주축조재료로 사용하여도 안정성에는 큰 문제가 없을 것으로 판단된다.

Numerical study on bearing behavior of pile considering sand particle crushing

  • Wu, Yang;Yamamoto, Haruyuki;Yao, Yangping
    • Geomechanics and Engineering
    • /
    • 제5권3호
    • /
    • pp.241-261
    • /
    • 2013
  • The bearing mechanism of pile during installation and loading process which controls the deformation and distribution of strain and stress in the soil surrounding pile tip is complex and full of much uncertainty. It is pointed out that particle crushing occurs in significant stress concentrated region such as the area surrounding pile tip. The solution to this problem requires the understanding and modeling of the mechanical behavior of granular soil under high pressures. This study aims to investigate the sand behavior around pile tip considering the characteristics of sand crushing. The numerical analysis of model pile loading test under different surcharge pressure with constitutive model for sand crushing is presented. This constitutive model is capable of predicting the dilatancy of soil from negative to positive under low confining pressure and only negative dilatancy under high confining pressure. The predicted relationships between the normalized bearing stress and normalized displacement are agreeable with the experimental results during the entire loading process. It is estimated from numerical results that the vertical stress beneath pile tip is up to 20 MPa which is large enough to cause sand to be crushed. The predicted distribution area of volumetric strain represents that the distributed area shaped wedge for volumetric contraction is beneath pile tip and distributed area for volumetric expansion is near the pile shaft. It is demonstrated that the finite element formulation incorporating a constitutive model for sand with crushing is capable of producing reasonable results for the pile loading problem.

수치해석에 의한 쇄석기둥의 지지력 특성 (Bearing Capacity Characteristics of Stone Column by Numerical Analysis)

  • 천병식;김백영
    • 한국지반환경공학회 논문집
    • /
    • 제5권1호
    • /
    • pp.75-84
    • /
    • 2004
  • 연약지반 개량공법의 하나인 쇄석기둥은 일반 연직배수공법에 주로 사용되는 모래재료 대신에 쇄석재료를 사용하며 배수 및 침하량 감소, 지지력 증대의 복합 효과에 의해 지반을 개량한다. 최근 들어 대규모 토목공사에 사용되는 건설재료로서 막대한 양이 소요되는 모래는 현재 수요는 급증하고 구득은 갈수록 어려워져 재료는 고갈상태에 이르고 있는 실정으로서 쇄석기둥공법의 적용이 더욱 늘어나고 있는 추세이다. 특히, 최근 들어 쇄석기둥의 지지력 보강효과를 이용하는 경향이 증가함에 따라 지지력 보강 예측이 중요한 관심사항으로 대두되었으나 아직까지 주변지반과 쇄석기둥 구조체의 상호 거동을 합리적으로 반영한 산정식이 제시되어있지 못한 상태이다. 따라서 본 연구에서는 연약지반상에 조성된 쇄석기둥에 의한 개량효과중 지지력 증대효과를 규명하기 위해 쇄석기둥의 지지력 거동을 수치해석적으로 시뮬레이션하였다. 이렇게 함으로써 쇄석기둥이 설치되는 원지반의 물성과 쇄석기둥의 물성을 반영하면서 하중-침하거동을 파악하고자 하였다. 수치해석 시뮬레이션에 의한 지지력 거동을 원지반조건, 쇄석기둥 조건별로 분석하여 쇄석기둥의 지지력 거동식을 제안하고 제안된 지지력 예측방법과 거동을 계측한 실측치와의 검증을 실시하였다.

  • PDF

Experimental studies on rheological properties of smart dynamic concrete

  • Bauchkara, Sunil D.;Chore, H.S.
    • Advances in concrete construction
    • /
    • 제5권3호
    • /
    • pp.183-199
    • /
    • 2017
  • This paper reports an experimental study into the rheological behaviour of Smart Dynamic Concrete (SDC). The investigation is aimed at quantifying the effect of the varying amount of mineral admixtures on the rheology, setting time and compressive strength of SDC containing natural sand and crushed sand. Ordinary Portland cement (OPC) in conjunction with the mineral admixtures was used in different replacement ratio keeping the mix paste volume (35%) and water binder ratio (0.4) constant at controlled laboratory atmospheric temperature ($33^{\circ}C$ to $35^{\circ}C$). The results show that the properties and amount of fine aggregate have a strong influence on the admixture demand for similar initial workability, i.e., flow. The large amounts of fines and lower value of fineness modulus (FM) of natural sand primarily increases the yield stress of the SDC. The mineral admixtures at various replacement ratios strongly contribute to the yield stress and plastic viscosity of SDC due to inter particle friction and cohesion.

골재의 입도 및 입형이 제품용 시멘트 모르타르의 강도 및 흡수율에 미치는 영향 (Influences of Grading and Grade Shape in Aggregates on the Strength and Absorption of Cement Mortar Products)

  • 한천구;신병철;김기철;이상태
    • 콘크리트학회논문집
    • /
    • 제12권1호
    • /
    • pp.45-52
    • /
    • 2000
  • The quality of cement mortar products largely depends on various work conditions, specially on the grading and grade shape of aggregates. However, the effect of grading and grade shape on the quality is not considered by both KS codes and production processes, resulting in the increase of the possibility of quality degradation. The objective of this study was to investigate the effect of grading and grade shape on the strength and absorption characteristics of cement mortar products. Flexural and compressive strength increased with the increase of fineness modulus and W/C. The strength increase was measured larger with river sand than with crushed sand. Absorption tended to decrease with the increase of fineness modulus and W/C, but did not affected by the source of sand.