• Title/Summary/Keyword: Crumb rubber

Search Result 51, Processing Time 0.024 seconds

Effect of Crumb Rubber on the Wear Tolerance of Korean Lawngrass (폐타이어 칩이 한국들잔디의 내답압성에 미치는 영향)

  • Lee, Chung-Hwan;Kim, Ki-Sun
    • Asian Journal of Turfgrass Science
    • /
    • v.17 no.1
    • /
    • pp.19-33
    • /
    • 2003
  • The objective of this study was to evaluate the effects of crumb rubber recycled from used tires as a soil incorporation and topdressing materials on a trafficked Korean lawngrass‘Zenith’(Zoysia japonica). In Exp 1, incorporation treatments included three particle sizes (PS: coarse =4∼6.35 mm, medium =2∼4 mm, and One : less than 2 mm in diameter) and two incorporation rate (IR: 10 and 20%). Wear treatments were applied 30 passes per day by compactor weights being 60 kg with soccer shoes. Topdressing treatments included three PS and two topdressing depth (TD: 5 and 10 mm). Wear treatments were the same as described in Exp 1. In Exp 1, the treatment with medium PS+IR 20 resulted in the tendency to have high total clipping yield. There was no significant difference in clipping yield, turfgrass visual color, coverage, and root length among the treatments. Compared to control, tissue Zn levels increased about 6.5-fold by the treatments. The treatment with fine PS +IR 20 caused a less peak deceleration than coarse PS +IR 10. Total porosity, air-filled porosity, and capillary porosity increased with fine PS +IR 20. In Exp 2, compared to controls, however, there was a difference in turfgrass visual color after the termination of traffic treatment. There was no difference in root length. The treatment with fine PS + TD 10 resulted in the highest total clipping yield. As a result of soil physical analysis, soil penetration resistance was reduced by the treatments. The treatment with coarse PS resulted in a less peak deceleration than fine PS. In conclusion, turfgrass growth was increased by crumb rubber incorporation which enhanced soil physical properties. The crumb rubber topdressing was able to cushion the crown tissue area while still providing a smooth and uniform surface, improve overall turfgrass quality, and reduce compaction.

Experimental Lnvestigation on Mechanical Characteristics and Environmental Effects on Rubber Concrete

  • Khorrami, Morteza;Vafai, Abolhassan;Khalilitabas, Ahmad A.;Desai, Chandrakant S.;Ardakani, M. H. Majedi
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.1
    • /
    • pp.17-23
    • /
    • 2010
  • The feasibility of the use of scrap tire rubber in concrete was investigated. The tests conducted in two groups: replacing of coarse aggregates with crumb rubber and cement particles with rubber powder. To distinguish the properties of new concrete, the following mechanical and durability tests were designed: compressive, tensile and flexural strength, permeability and water absorption. Rubber addition could affect the concrete properties depend on the type and percentage of the rubber added. Although the rubber addition modifies the mechanical characteristics of concrete in a way, but higher rubber content could not be useful. Concrete durability showed more dependency to the type of rubber instead of percentage of rubber. Moreover, to optimize the mechanical and durability of rubberized concrete, the useful percentage of rubber has been recommended.

Post-fire flexural behavior of functionally graded fiber-reinforced concrete containing rubber

  • Nematzadeh, Mahdi;Mousavi, Reza
    • Computers and Concrete
    • /
    • v.27 no.5
    • /
    • pp.417-435
    • /
    • 2021
  • The optimal distribution of steel fibers over different layers of concrete can be considered as an appropriate method in improving the structural performance and reducing the cost of fiber-reinforced concrete members. In addition, the use of waste tire rubber in concrete mixes, as one of the practical ways to address environmental problems, is highly significant. Thus, this study aimed to evaluate the flexural behavior of functionally graded steel fiber-reinforced concrete containing recycled tire crumb rubber, as a volume replacement of sand, after exposure to elevated temperatures. Little information is available in the literature regarding this subject. To achieve this goal, a set of 54 one-, two-, and three-layer concrete beam specimens with different fiber volume fractions (0, 0.25, 0.5, 1, and 1.25%), but the same overall fiber content, and different volume percentages of the waste tire rubber (0, 5, and 10%) were exposed to different temperatures (23, 300, and 600℃). Afterward, the parameters affecting the post-heating flexural performance of concrete, including flexural strength and stiffness, toughness, fracture energy, and load-deflection diagrams, along with the compressive strength and weight loss of concrete specimens, were evaluated. The results indicated that the flexural strength and stiffness of the three-layer concrete beams respectively increased by 10 and 7%, compared to the one-layer beam specimens with the same fiber content. However, the flexural performance of the two-layer beams was reduced relative to those with one layer and equal fiber content. Besides, the flexural strength, toughness, fracture energy, and stiffness were reduced by approximately 10% when a 10% of natural sand was replaced with tire rubber in the three-layer specimens compared to the corresponding beams without crumb rubber. Although the flexural properties of concrete specimens increased with increasing the temperature up to 300℃, these properties degraded significantly with elevating the temperature up to 600℃, leading to a sharp increase in the deflection at peak load.

Modern Technologies for recycling Waste Tires (폐타이어 활용기술의 현대화)

  • 유택수;장지원;민경화
    • Resources Recycling
    • /
    • v.4 no.4
    • /
    • pp.22-36
    • /
    • 1995
  • Waste tires are increased by increasing number of automobiles, which are the symbol of the mordern society. The waste tires create the environmental, visual hazard and landfill space problems. Recycling waste tires is the best way to solve the problems. The landfill space and the natural resources could by reserved by utilizing waste tires. The waste tires were utilized as whole tires, processed tires (crumb rubber) and energy. The plants for manufacturing crumb rubber also were investigated for their equipments and scales.

  • PDF

Mechanical Properties of Composites of HDPE and Recycled Tire Crumb (폐타이어 분말과 고밀도 폴리에틸렌 복합재료의 기계적 물성)

  • Kwak, Sung-Bok;Choi, Mi-Ae;Lee, Seong-Jae
    • Elastomers and Composites
    • /
    • v.36 no.1
    • /
    • pp.22-29
    • /
    • 2001
  • For a purpose of recycling of waste tires, composites of 10-60wt% recycled tire crumb blended with high density polyethylene(HDPE) were prepared, and their mechanical properties such as tensile strength, elongation at break, tensile modulus and impact strength were investigated as a function of tire crumb content. Ethylene-acrylic acid(EAA) copolymer was introduced by 10phr as a compatibilizer and the mechanical properties of the composites were measured. For the blend composition of 40wt% tire crumb content showing improved impact strength, the mechanical properties were measured by varying the EAA content of 5-15phr. All blends, whether modified or unmodified, showed a gradual improvement in impact strength as the tire crumb content increased, but the other properties decreased compared with the pure HDPE. In particular, the addition of EAA copolymer to the tire crumb content over 30wt% showed substantial improvement in impact strength. There was no significant effect of tire crumb size on impact strength of the composites.

  • PDF

Cost Analysis of Modified Asphalts using a Performance Based Fracture Criterion (공용성에 근거한 파괴기준을 이용한 개질 아스팔트 포장의 비용 효과 분석)

  • Kim, Boo-Il
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.49-56
    • /
    • 2005
  • The effect of modified asphalts is evaluated by simple comparison of a single parameter (i.e., tensile strength, stiffness, etc.) between modified asphalt mixture and unmodified mixture. The use of a single parameter to evaluate the effect of modified asphalt must be questioned. Rather, a single unified framework that accounts for changes in key mixture properties is needed to effectively evaluate the modified asphalt mixtures. This study used a new performance-based fracture parameter as a single unified framework, the Energy Ratio (ER), for quantifying the effect of modified asphalts oil the fracture resistance of mixtures. The Energy Ratio was then used as a performance criterion for calculating the construction cost of two modified asphalt pavements (SBS and Crumb Rubber) and unmodified asphalt pavement. The results showed that the Energy Ratio of SBS modified asphalt was higher than those of crumb rubber and unmodified asphalt. Cost analyses indicated that the construction cost of the AC layer would be reduced by up to 24% by SBS modification. Based on the results, the Energy Ratio is capable of evaluating the effect of modified mixtures, and may form the basis of a promising fracture criterion for performance-based thickness design in asphalt pavements.

  • PDF