• Title/Summary/Keyword: Cruise Control System

Search Result 162, Processing Time 0.029 seconds

Vehicle-Driving-Load-Adaptive Control of Intelligent Vehicle (차량 주행부하 추정기법을 이용한 지능화 차량의 적응제어)

  • Lee, Se-Jin;Yi, Kyong-Su
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.653-658
    • /
    • 2000
  • A driving load estimation method for intelligent cruise control(ICC) vehicles has been proposed in this paper. The driving load is one of the most important factors of perturbations in vehicle control and can affect the control performance critically. The Effect of the control with driving load estimation on vehicle-to-vehicle distance control has been presented and investigated via computer simulations and vehicle tests. The results show that the control with driving load estimation can provide ICC system with a good acceleration tracking performance. In addition, the results show that driving load estimation can compensate not only variation of driving load but also the modeling errors.

  • PDF

Throttle/Brake Combined Control for Vehicle-to-vehicle Distance and Speed Control (찻간 속도/거리제어를 위한 구동력/제동력 통합제어)

  • 이세진;이경수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.137-142
    • /
    • 2001
  • A throttle/brake control law for the intelligent cruise control(ICC) systems has been proposed in this paper. The ICC system consists of a vehicle detection sensor, the control algorithm and a throttle/brake actuators. The control performance has been investigated through vehicle tests. The test vehicle is equipped with a MMW radar sensor, a solenoid-valve-controlled Electronic-Vacuum-Booster(EVB) and a step-motor controlled throttle actuator. The results indicate the proposed throttle/brake control laws can provide satisfactory vehicle-to-vehicle distance and velocity control performance.

  • PDF

Development of a Real-time Driving Simulator for ACC(Adaptive-Cruise-Control) Performance Evaluation (적응 순항 제어기 성능 평가를 위한 실시간 차량 시뮬레이터 개발)

  • Han, Dong-Hoon;Yi, Kyong-Su
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.28-34
    • /
    • 2006
  • An ACC driving simulator is a virtual reality device which designed to test or evaluate vehicle control algorithm. It is designed and built based on the rapid control prototyping(RCP) concept. Therefore this simulator adopt RCP tools to solve the equation of a vehicle dynamics model and control algorithm in real time, rendering engine to provide real-time visual representation of vehicle behavior and CAN communication to reduce networking load. It can provide also many different driving test environment and driving scenarios.

An Investigation of Vehicle-to-Vehicle Distance Control Laws Using Hardware-in-the Loop Simulation (Hardware-in-the Loop Simulation 을 통한 차간거리 제어시스템의 제어 성능 연구)

  • Yi, Kyong-Su;Lee, Chan-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1401-1407
    • /
    • 2002
  • This paper represents an investigation of the vehicle-to-vehicle distance control system using Hardware-in-the-Loop Simulation(HiLS). Control logic is primarily developed and tested with a specially equipped test vehicle. Establishment of an efficient and low cost development tool is a very important issue, and test vehicle approach is costly and time consuming. HiLS method is useful in the investigation of driver assistance and active safety systems. The HiLS system consists of a stepper motor for throttle control, a hydraulic brake system with an electronic vacuum booster, an electronic controller unit, a data logging computer which are used to save vehicle states and signals of actuator through a CAN and a simulation computer using mathematical vehicle model. Adaptation of a CAN instead of RS-232 Serial Interface for communication is a trend in the automotive industry. Since this environment is the same as a test vehicle, a control logic verified in laboratory can be easily transferred to a test vehicle.

Design of Automatic Cruise Control System of Mobile Robot Using Fuzzy-Neural Technique (퍼자-뉴럴 제어기법에 의한 이동형 로봇의 자율주행 제어시스템 설계)

  • 김휘동
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.199-203
    • /
    • 2000
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

Data Collection System to Water Depth in Reservoir Using Accurate Location Information (정밀 위치정보 데이터를 이용한 수중 하저면의 수심 정보 획득 시스템)

  • Kim, On;Goh, Yeong-Jin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.327-334
    • /
    • 2020
  • In this paper, an automatic cruise system of unmanned boat was developed for surveying water depth in reservoir using accurate location information. Using global satellite navigation system(GNSS) data in real time, this unmanned system, combined with an echo sounder, can simultaneously collect location information and depth information on the reservoir. This automatic navigation system allows the automatic route generation program to automatically generate a cruise route according to the input conditions for grid sizes of 5m, 10m and 20m, and automatically controls the cruise route with high positional accuracy. The developed system was tested to verify the applicability of the selected Yonggok(Geoncheon) reservoir as a test reservoir located in Suncheon, Jeollanam-do.

Design of 24 GHz Radar with Subspace-Based Digital Beam Forming for ACC Stop-and-Go System

  • Jeong, Seong-Hee;Oh, Jun-Nam;Lee, Kwae-Hi
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.827-830
    • /
    • 2010
  • For an adaptive cruise control (ACC) stop-and-go system in automotive applications, three radar sensors are needed because two 24 GHz short range radars are used for object detection in an adjacent lane, and one 77 GHz long-range radar is used for object detection in the center lane. In this letter, we propose a single sensor-based 24 GHz radar with a detection capability of up to 150 m and ${\pm}30^{\circ}$ for an ACC stop-and-go system. The developed radar is highly integrated with a high gain patch antenna, four channel receivers with GaAs RF ICs, and back-end processing board with subspace based digital beam forming algorithm.

Development of Algorithm for Advanced Driver Assist based on In-Wheel Hybrid Driveline (인휠 전기 구동 기반의 능동안전지원 알고리즘 개발)

  • Hwang, Yun-Hyoung;Yang, In-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.1-8
    • /
    • 2017
  • This paper presents the development of an adaptive cruise control (ACC) system, which is one of the typical advanced driver assist systems, for 4-wheel drive hybrid in-wheel electric vehicles. The front wheels of the vehicle are driven by a combustion engine, while its rear wheels are driven by in-wheel motors. This paper proposes an adaptive cruise control system which takes advantage of the unique driveline configuration presented herein, while the proposed power distribution algorithm guarantees its tracking performance and fuel efficiency at the same time. With the proposed algorithm, the vehicle is driven only by the engine in normal situations, while the in-wheel motors are used to distribute the power to the rear wheels if the tracking performance decreases. This paper also presents the modeling of the in-wheel motors, hybrid in-wheel driveline, and integrated ACC control system based on a commercial high-precision vehicle dynamics model. The simulation results obtained with the model are presented to confirm the performance of the proposed algorithm.

The Effects of Driver's Trust in Adaptive Cruise Control and Traffic Density on Workload and Situation Awareness (적응형 정속 주행 시스템에 대한 운전자 신뢰와 도로 혼잡도가 작업부하 및 상황인식에 미치는 효과)

  • Kwon, Soon-Chan;Lee, Jae-Sik
    • Science of Emotion and Sensibility
    • /
    • v.23 no.2
    • /
    • pp.103-120
    • /
    • 2020
  • Using driving simulation, this study investigated the effects of driver's trust in the adaptive cruise control (ACC) system and road density on driver's workload and situation awareness. The drivers were allocated into one of four experimental conditions manipulated by ACC system trust level (trust-increased vs. trust-decreased) and road congestion (high vs. low). The workload and situational awareness of the participants were measured as dependent variables. The results showed followings. First, trust-decreased group for the ACC system had significantly lower trust scores for the system in all of the measurement items, including reducing the driving load and securing safe driving due to the use of this system, than the trust-increased group. Second, the trust-decreased group showed a slower reaction time in the secondary tasks and higher subjective workload than trust-increased group. Third, in contrast, the situational awareness for the driving situation was significantly higher in the trust-decreased group than trust-increased group. The results of this study showed that the driver's trust in the ACC system can affect the various information processing performed while driving. Also, these results suggest that trust in the user's system should be considered as an important variable in the design of an automated driving assistance system.

Design of an adaptive backstepping controller for auto-berthing a cruise ship under wind loads

  • Park, Jong-Yong;Kim, Nakwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.347-360
    • /
    • 2014
  • The auto-berthing of a ship requires excellent control for safe accomplishment. Crabbing, which is the pure sway motion of a ship without surge velocity, can be used for this purpose. Crabbing is induced by a peculiar operation procedure known as the push-pull mode. When a ship is in the push-pull mode, an interacting force is induced by complex turbulent flow around the ship generated by the propellers and side thrusters. In this paper, three degrees of freedom equations of the motions of crabbing are derived. The equations are used to apply the adaptive backstepping control method to the auto-berthing controller of a cruise ship. The controller is capable of handling the system non-linearity and uncertainty of the berthing process. A control allocation algorithm for a ship equipped with two propellers and two side thrusters is also developed, the performance of which is validated by simulation of auto-berthing.