DOI QR코드

DOI QR Code

The Effects of Driver's Trust in Adaptive Cruise Control and Traffic Density on Workload and Situation Awareness

적응형 정속 주행 시스템에 대한 운전자 신뢰와 도로 혼잡도가 작업부하 및 상황인식에 미치는 효과

  • 권순찬 (부산대학교 심리학과) ;
  • 이재식 (부산대학교 심리학과, 사회과학연구원)
  • Received : 2020.03.27
  • Accepted : 2020.06.15
  • Published : 2020.06.30

Abstract

Using driving simulation, this study investigated the effects of driver's trust in the adaptive cruise control (ACC) system and road density on driver's workload and situation awareness. The drivers were allocated into one of four experimental conditions manipulated by ACC system trust level (trust-increased vs. trust-decreased) and road congestion (high vs. low). The workload and situational awareness of the participants were measured as dependent variables. The results showed followings. First, trust-decreased group for the ACC system had significantly lower trust scores for the system in all of the measurement items, including reducing the driving load and securing safe driving due to the use of this system, than the trust-increased group. Second, the trust-decreased group showed a slower reaction time in the secondary tasks and higher subjective workload than trust-increased group. Third, in contrast, the situational awareness for the driving situation was significantly higher in the trust-decreased group than trust-increased group. The results of this study showed that the driver's trust in the ACC system can affect the various information processing performed while driving. Also, these results suggest that trust in the user's system should be considered as an important variable in the design of an automated driving assistance system.

본 연구에서는 운전 시뮬레이션을 이용하여 적응형 정속 주행(adaptive cruise control: ACC) 시스템에 대한 운전자의 신뢰 및 도로 혼잡도가 운전자의 작업부하와 상황인식에 미치는 효과를 알아보았다. ACC 시스템에 대한 운전자의 신뢰는 ACC 시스템이 정상 작동하는 조건과 시스템이 오작동하는 조건을 통해 신뢰상승 집단과 신뢰감소 집단으로 구분하였다. 도로 혼잡도는 운전자 차량 주변의 차량 수로 수준을 조작하였다. ACC 시스템에 대한 신뢰와 도로 혼잡도를 달리한 네 가지의 실험 조건 각각에 대해 운전자들의 작업부하와 상황인식을 측정하였다. 본 연구의 결과를 요약하면 다음과 같다. 먼저 ACC 시스템에 대한 신뢰감소 집단은 신뢰상승 집단에 비해 이 시스템의 사용으로 인한 운전부담 경감이나 안전운전 확보 등을 포함한 측정 항목 모두에서 시스템에 대한 신뢰 점수가 유의하게 더 낮았다. 둘째, ACC 시스템에 대한 신뢰감소 집단은 신뢰상승 집단에 비해 이차과제에서 더 느린 반응시간을 보였고, 시스템 사용에서의 주관적인 작업부하 수준도 더 높게 평정하였다. 셋째, 이와는 대조적으로 운전자들의 운전상황에 대한 상황인식은 ACC 시스템 신뢰감소 집단이 신뢰상승 집단보다 유의하게 더 우수하였다. 본 연구의 결과들은 ACC 시스템에 대한 신뢰가 운전 중에 수행하는 다양한 정보처리에 영향을 미칠 수 있음을 보였는데, 이것은 자동화된 운전보조 시스템의 설계에서 사용자의 시스템에 대한 신뢰가 중요한 변인으로 고려되어야 한다는 것을 시사한다.

Keywords

References

  1. Banks, V. A., & Stanton, N. A. (2016). Keep the driver in control: Automating automobiles of the future. Applied Ergonomics, 53, 389-395. DOI: 10.1016/j.apergo.2015.06.020
  2. Beggiato, M., & Krems, J. F. (2013). The evolution of mental model, trust and acceptance of adaptive cruise control in relation to initial information. Transportation Research Part F: Traffic Psychology and Behaviour, 18, 47-57. DOI: 10.1016/j.trf.2012.12.006
  3. Borojeni, S. S., Chuang, L., Heuten, W., & Boll, S. (2016, October). Assisting drivers with ambient take-over requests in highly automated driving. In Proceedings of the 8th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (pp. 237-244). ACM. DOI: 10.1145/3003715.3005409
  4. Chen, J. Y., & Barnes, M. J. (2014). Human-agent teaming for multirobot control: A review of human factors issues. IEEE Transactions on Human-Machine Systems, 44(1), 13-29. DOI: 10.1109/THMS.2013. 2293535
  5. Corver, S. C., Unger, D., & Grote, G. (2016). Predicting air traffic controller workload: trajectory uncertainty as the moderator of the indirect effect of traffic density on controller workload through traffic conflict. Human Factors, 58(4), 560-573. DOI: 10.1177/0018720816639418
  6. Edland, A., & Svenson, O. (1993). Judgment and decision making under time pressure. Time pressure and stress in human judgment and decision making (pp. 27-40). Springer, Boston, MA. DOI: 10.1007/978-1-4757-6846-6_2
  7. Edquist, J., Rudin-Brown, C. M., & Lenne, M. G. (2012). The effects of on-street parking and road environment visual complexity on travel speed and reaction time. Accident Analysis & Prevention, 45, 759-765. DOI: 10.1016/j.aap.2011.10.001
  8. Endsley, M. R. (1995). Measurement of situation awareness in dynamic systems. Human Factors, 37(1), 65-84. DOI: 10.1518/001872095779049499
  9. Feldhutter, A., Gold, C., Huger, A., & Bengler, K. (2016). Trust in automation as a matter of media influence and experience of automated vehicles. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2024-2028. Sage CA: Los Angeles, CA: SAGE Publications. DOI: 10.1177/1541931213601460
  10. Gold, C., Korber, M., Hohenberger, C., Lechner, D., & Bengler, K. (2015). Trust in automation - Before and after the experience of take-over scenarios in a highly automated vehicle. Procedia Manufacturing, 3, 3025-3032. DOI: 10.1016/j.promfg.2015.07.847
  11. Gold, C., Korber, M., Lechner, D., & Bengler, K. (2016). Taking over control from highly automated vehicles in complex traffic situations: the role of traffic density. Human Factors, 58(4), 642-652. DOI: 10.1177/0018720816634226
  12. Gugerty, L. (1998). Evidence from a partial report task for forgetting in dynamic spatial memory. Human Factors, 40(3), 498-508. DOI: 10.1518/001872098779591412
  13. Hanowski, R. J., Hickman, J. S., Olson, R. L., & Bocanegra, J. (2009). Evaluating the 2003 revised hours-of-service regulations for truck drivers: The impact of time-on-task on critical incident risk. Accident Analysis & Prevention, 41(2), 268-275. DOI: 10.1016/j.aap.2008.11.007
  14. Heenan, A., Herdman, C. M., Brown, M. S., & Robert, N. (2014). Effects of conversation on situation awareness and working memory in simulated driving. Human Factors, 56, 1077-1092. DOI: 10.1177/0018720813519265
  15. Heikoop, D. D., de Winter, J. C., van Arem, B., & Stanton, N. A. (2019). Acclimatizing to automation: driver workload and stress during partially automated car following in real traffic. Transportation Research Part F: Traffic Psychology and Behaviour, 65, 503-517. DOI: 10.1016/j.trf.2019.07.024
  16. Jennings, P. (2017). Effect of knowledge of automation capability on trust and workload in an automated vehicle: A driving simulator study. In Advances in Human Aspects of Transportation: Proceedings of the AHFE 2018 International Conference on Human Factors in Transportation, July 21-25, 2018, Loews Sapphire Falls Resort at Universal Studios, Orlando, Florida, USA, 786, 410. Springer. DOI: https://doi.org/10.1007/978-3-319-93885-1_37
  17. Johannsdottir, K. R., & Herdman, C. M. (2010). The role of working memory in supporting drivers’ situation awareness for surrounding traffic. Human Factors, 52(6), 663-673. DOI: 10.1177/0018720810385427
  18. Joo, M., & Lee, J. (2014). The relationship between older drivers' BIS/BAS and life satisfaction: Mediating effects of mobility and affectivity. Science of Emotion and Sensibility, 17(4), 29-40.
  19. Kantowitz, B. H., & Simsek, O. (2001). Secondary-task measures of driver workload. Stress, workload and fatigue (pp. 395-408). Laurence Erlbaum, NY. DOI: http://worldcat.org/isbn/0805831789
  20. Kaber, D., Zhang, Y., Jin, S., Mosaly, P., & Garner, M. (2012). Effects of hazard exposure and roadway complexity on young and older driver situation awareness and performance. Transportation Research Part F: Traffic Psychology and Behaviour, 15(5), 600-611. DOI: 10.1016/j.trf.2012.06.002
  21. Kazi, T. A., Stanton, N. A., Walker, G. H., & Young, M. S. (2007). Designer driving: drivers' conceptual models and level of trust in adaptive cruise control. International Journal of Vehicle Design, 45(3), 339-360. DOI: 10.1080/00140130701322592
  22. Lee, J. (2017). Difference in serial search for directional stimuli among drivers’ age groups and gender. Journal of the Korean Data Analysis Society, 20(4), 2077-2090. DOI: 10.37727/jkdas.2018.20.4.2077
  23. Lee, J. (2018). Comparisons of middle- and old-aged drivers’ recognition for driving scene elements using sensitivity, response bias, and response time. Journal of the Korean Data Analysis Society, 20(6), 3185-3199. DOI: 10.37727/jkdas.2018.20.6.3185
  24. Lee, J., Joo, M., Kim, J. H., Kim, Y. K., Lee, W. Y., Ryu, J. B., & Oh, J. S. (2017). Comparisons of middle-, old-, and stroked old-age drivers' reaction time and accuracy based on multiple reaction time tasks. Science of Emotion and Sensibility, 20(1), 115-132. DOI: 10.14695/KJSOS.2017.20.1.115
  25. Lee, J. D., & See, K. A. (2004). Trust in automation: Designing for appropriate reliance. Human Factors, 46(1), 50-80. DOI: 10.1518/hfes.46.1.50.30392
  26. Ma, R., & Kaber, D. B. (2005). Situation awareness and workload in driving while using adaptive cruise control and a cell phone. International Journal of Industrial Ergonomics, 35(10), 939-953. DOI: 10.1016/j.ergon.2005.04.002
  27. Manzey, D., Reichenbach, J., & Onnasch, L. (2012). Human performance consequences of automated decision aids: The impact of degree of automation and system experience. Journal of Cognitive Engineering and Decision Making, 6(1), 57-87. DOI: 10.1177/1555343411433844
  28. Miller, D., Sun, A., & Ju, W. (2014, October). Situation awareness with different levels of automation. In 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 688-693). IEEE. DOI: 10.1109/smc.2014.6973989
  29. Nilsson, L., & Nabo, A. (1996). Evaluation of application 3: intelligent cruise control simulator experiment: effects of different levels of automation on driver behaviour, workload and attitudes. Statens vag-och transportforskningsinstitut., VTI sartryck 266.
  30. NHTSA, U. (2013). Department of transportation releases policy on automated vehicle development, National Highway Traffic Safety Administration, US Department of Transportation.
  31. Payre, W., Cestac, J., & Delhomme, P. (2016). Fully automated driving: Impact of trust and practice on manual control recovery. Human Factors, 58(2), 229-241. DOI: 10.1177/0018720815612319
  32. Pennetti, C. A., Hollenback, K., Kim, I., & Lambert, J. H. (2019, November). Cognitive load variability from road characteristics should influence a safety requirement for vehicle stopping sight distance. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2129-2133. Sage CA: Los Angeles, CA: SAGE Publications. DOI: 10.1177/1071181319631396
  33. Radlmayr, J., Gold, C., Lorenz, L., Farid, M., & Bengler, K. (2014, September). How traffic situations and non-driving related tasks affect the take-over quality in highly automated driving. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2063-2067. Sage CA: Los Angeles, CA: Sage Publications. DOI: 10.1177/15419312145 81434
  34. Rajaonah, B., Anceaux, F., & Vienne, F. (2006). Trust and the use of adaptive cruise control: A study of a cut-in situation. Cognition, Technology & Work, 8(2), 146-155. DOI: 10.1007/s10111-006-0030-3
  35. Risser, R. (2019). The safety of intelligent driver support systems: Design, evaluation and social perspectives. CRC Press. DOI: 10.1080/00140139.2013.774823
  36. Rovira, E., McGarry, K., & Parasuraman, R. (2007). Effects of imperfect automation on decision making in a simulated command and control task. Human Factors, 49(1), 76-87. DOI: 10.1518/001872007779598082
  37. Rudin-Brown, C. M., & Parker, H. A. (2004). Behavioural adaptation to adaptive cruise control (ACC): implications for preventive strategies. Transportation Research Part F: Traffic Psychology and Behaviour, 7(2), 59-76. DOI: 10.1016/j.trf.2004.02.001
  38. Schaefer, K. E., Chen, J. Y., Szalma, J. L., & Hancock, P. A. (2016). A meta-analysis of factors influencing the development of trust in automation: Implications for understanding autonomy in future systems. Human Factors, 58(3), 377-400. DOI: 10.1177/0018720816634228
  39. Sheridan, T. B. (2019). Individual differences in attributes of trust in automation: measurement and application to system design. Frontiers in Psychology, 10: 1117. DOI: 10.3389/fpsyg.2019.01117
  40. Sonoda, K., & Wada, T. (2017). Displaying system situation awareness increases driver trust in automated driving. IEEE Transactions on Intelligent Vehicles, 2(3), 185-193. DOI: 10.1109/tiv.2017.2749178
  41. Stanton, N. A., Young, M., & McCaulder, B. (1997). Drive-by-wire: The case of driver workload and reclaiming control with adaptive cruise control. Safety Science, 27(2-3), 149-159. DOI: 10.1016/s0925-7535(97)00054-4
  42. Takada, Y., & Shimoyama, O. (2001). Evaluation of driving-assistance systems based on drivers' workload. In Proceedings of the First International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, IA: The University of Iowa. DOI: 10.17077/drivingassessment.1040
  43. Trick, L. M., Toxopeus, R., & Wilson, D. (2010). The effects of visibility conditions, traffic density, and navigational challenge on speed compensation and driving performance in older adults. Accident Analysis & Prevention, 42(6), 1661-1671. DOI: 10.1016/j.aap.2010.04.005
  44. Tsang, P., & Wilson, G. F. (1997). Mental workload. Handbook of Human Factors and Ergonomics, 2, 243-268.
  45. Young, K. L., Salmon, P. M., & Cornelissen, M. (2013). Missing links? The effects of distraction on driver situation awareness. Safety Science, 56, 36-43. DOI: 10.1016/j.ssci.2012.11.004